【題目】如圖,以ABCO的頂點O為原點,邊OC所在直線為x軸,建立平面直角坐標(biāo)系,頂點A、C的坐標(biāo)分別是(2,4)、(3,0),過點A的反比例函數(shù)的圖象交BC于D,連接AD,則四邊形AOCD的面積是 .
【答案】9
【解析】解:∵四邊形ABCD是平行四邊形,A、C的坐標(biāo)分別是(2,4)、(3,0),
∴點B的坐標(biāo)為:(5,4),
把點A(2,4)代入反比例函數(shù)y=得:k=8,
∴反比例函數(shù)的解析式為:y=;
設(shè)直線BC的解析式為:y=kx+b,
把點B(5,4),C(3,0)代入得:,
解得:k=2,b=﹣6,
∴直線BC的解析式為:y=2x﹣6,
解方程組 得:
,或 (不合題意,舍去),
∴點D的坐標(biāo)為:(4,2),
即D為BC的中點,
∴△ABD的面積=平行四邊形ABCD的面積,
∴四邊形AOCD的面積=平行四邊形ABCO的面積﹣△ABD的面積=3×4﹣×3×4=9;
所以答案是:9.
【考點精析】通過靈活運用比例系數(shù)k的幾何意義和平行四邊形的性質(zhì),掌握幾何意義:表示反比例函數(shù)圖像上的點向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積;平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,拋物線y=ax2﹣2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A、B,點A的坐標(biāo)為(4,0).
(1)求該拋物線的解析式;
(2)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當(dāng)△CQE的面積最大時,求點Q的坐標(biāo);
(3)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標(biāo)為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,點P從點A出發(fā)以2cm/s的速度沿A→D→C運動,點P從點A出發(fā)的同時點Q從點C出發(fā),以1cm/s的速度向點B運動,當(dāng)點P到達(dá)點C時,點Q也停止運動.設(shè)點P,Q運動的時間為t秒.
(1)從運動開始,當(dāng)t取何值時,PQ∥CD?
(2)從運動開始,當(dāng)t取何值時,△PQC為直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①abc>0,②a﹣b+c<0,③2a=b,④4a+2b+c>0,⑤若點(﹣2,y1)和(,y2)在該圖象上,則y1>y2 . 其中正確的結(jié)論是 (填入正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了選拔學(xué)生參加“漢字聽寫大賽”,對九年級一班、二班各10名學(xué)生進(jìn)行漢字聽寫測試.計分采用10分制(得分均取整數(shù)),成績達(dá)到6分或6分以上為及格,得到9分為優(yōu)秀,成績?nèi)绫?所示,并制作了成績分析表(表2).
表1
一班 | 5 | 8 | 8 | 9 | 8 | 10 | 10 | 8 | 5 | 5 |
二班 | 10 | 6 | 6 | 9 | 10 | 4 | 5 | 7 | 10 | 8 |
表2
班級 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | 及格率 | 優(yōu)秀率 |
一班 | 7.6 | 8 | a | 3.82 | 70% | 30% |
二班 | b | 7.5 | 10 | 4.94 | 80% | 40% |
(1)在表2中,a= ,b= ;
(2)有人說二班的及格率、優(yōu)秀率均高于一班,所以二班比一班好;但也有人認(rèn)為一班成績比二班好,請你給出堅持一班成績好的兩條理由;
(3)一班、二班獲滿分的中同學(xué)性別分別是1男1女、2男1女,現(xiàn)從這兩班獲滿分的同學(xué)中各抽1名同學(xué)參加“漢字聽寫大賽”,用樹狀圖或列表法求出恰好抽到1男1女兩位同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=-x2+bx+c與坐標(biāo)軸分別交于點A(0,8)、B(8,0)和點E,動點C從原點O開始沿OA方向以每秒1個單位長度移動,動點D從點B開始沿BO方向以每秒1個單位長度移動,動點C、D同時出發(fā),當(dāng)動點D到達(dá)原點O時,點C、D停止運動.
(1)直接寫出拋物線的解析式: ;
(2)求△CED的面積S與D點運動時間t的函數(shù)解析式;當(dāng)t為何值時,△CED的面積最大?最大面積是多少?
(3)當(dāng)△CED的面積最大時,在拋物線上是否存在點P(點E除外),使△PCD的面積等于△CED的最大面積?若存在,求出P點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生對籃球、足球、排球、羽毛球、乒乓球這五種球類運動的喜愛情況,隨機抽取一部分學(xué)生進(jìn)行問卷調(diào)查,統(tǒng)計整理并繪制了以下兩幅不完整的統(tǒng)計圖:
請根據(jù)以上統(tǒng)計圖提供的信息,解答下列問題:
(1)共抽取名學(xué)生進(jìn)行問卷調(diào)查;
(2)補全條形統(tǒng)計圖,求出扇形統(tǒng)計圖中“籃球”所對應(yīng)的圓心角的度數(shù);
(3)該校共有2500名學(xué)生,請估計全校學(xué)生喜歡足球運動的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在天水市漢字聽寫大賽中,10名學(xué)生得分情況如表
人數(shù) | 3 | 4 | 2 | 1 |
分?jǐn)?shù) | 80 | 85 | 90 | 95 |
那么這10名學(xué)生所得分?jǐn)?shù)的中位數(shù)和眾數(shù)分別是( 。
A.85和82.5
B.85.5和85
C.85和85
D.85.5和80
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com