【題目】如圖,一條漁船某時刻在位置A觀測燈塔B、C(燈塔B距離A處較近),兩個燈塔恰好在北偏東65°45′的方向上,漁船向正東方向航行l小時45分鐘之后到達D點,觀測到燈塔B恰好在正北方向上,已知兩個燈塔之間的距離是12海里,漁船的速度是16海里/時,又知在燈塔C周圍18.6海里內(nèi)有暗礁,問這條漁船按原來的方向繼續(xù)航行,有沒有觸礁的危險?
【答案】這條船不改變方向會有觸礁危險
【解析】試題分析:由漁船的行程圖可看出:AB=AD÷cos∠BAD,AD=速度×時間,可求出AB的長;BC已知,AC的長也可計算出,CE=AC×sin∠BAD,從而求出CE的長;將CE與18.6作比較,若CE<18.6,則會觸礁;若CE>18.6,則不會觸礁.
試題解析:漁船的行程圖如圖所示:
1小時45分=小時=小時,
在Rt△ABD中,
AD=16×=28(海里),
∠BAD=90°﹣65°45′=24°15′,
∵cos24°15′=,
∴AB=≈30.71(海里),
AC=AB+BC=30.71+12=42.71(海里)
在Rt△ACE中,
sin24°15′=,
∴CE=ACsin24°15′=42.71×0.4107=17.54(海里),
∵17.54<18.6,
∴這條船不改變方向會有觸礁危險.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,以點A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F兩點,再分別以E,F為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點P,作射線AP,交CD于點M,
(1)由題意可知,射線AP是 ;
(2)若∠CMA=33°,求∠CAB的度數(shù);
(3)若CN⊥AM,垂直為N,試說明:AN=MN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=x2+(2m+1)x+(m2﹣1)有最小值﹣2,則m=________.
【答案】
【解析】試題解析:∵二次函數(shù)有最小值﹣2,
∴y=﹣,
解得:m=.
【題型】填空題
【結(jié)束】
19
【題目】如圖,已知△ABC三個頂點的坐標(biāo)分別是A(-2,3),B(-3,-1),C(-1,1)
(1)畫出△ABC繞點O逆時針旋轉(zhuǎn)90°后的△A1B1C1,并寫出點A1的坐標(biāo);
(2)畫出△ABC繞點O逆時針旋轉(zhuǎn)180°后的△A2B2C2,并寫出點A2的坐標(biāo);
(3)直接回答:∠AOB與∠A2OB2有什么關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是長方形紙帶,將紙帶沿折疊成圖2,再沿即折疊成圖3,若在圖1中∠DEF=a,則圖3中∠CFE用含有a的式子表示=_______(0<a<60°) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板中的兩塊直角三角板的直角頂點C按如圖方式疊放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.
(1)①若∠DCB=45°,則∠ACB的度數(shù)為 .
②若∠ACB=140°,則∠DCE的度數(shù)為 .
(2)由(1)猜想∠ACB與∠DCE的數(shù)量關(guān)系,并說明理由.
(3)當(dāng)∠ACE<90°且點E在直線AC的上方時,當(dāng)這兩塊三角尺有一組邊互相平行時,請直接寫出∠ACE角度所有可能的值(不必說明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形網(wǎng)格中,已知三角形ABC,按要求畫圖:
(1)把三角形ABC向下平移4個小格,得到三角形A1B1C1,畫出三角形A1B1C1.
(2)把三角形A1B1C1向右平移3個小格,得到三角形A2B2C2,畫出三角形A2B2C2.
(3)經(jīng)過2次平移,點P(x,y)的對應(yīng)點P2的坐標(biāo)是___________.
(4)三角形ABC的面積是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD及四邊形外一直線l,四個頂點A、B、C、D到直線l的距離分別為a、b、c、d.
(1)觀察圖形,猜想得出a、b、c、d滿足怎樣的關(guān)系式?證明你的結(jié)論.
(2)現(xiàn)將l向上平移,你得到的結(jié)論還一定成立嗎?請分情況寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.
(1)求證:PA是⊙O的切線;
(2)求證:AC2=COCP;
(3)若PD=,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,CD⊥AB,垂足為D.下列條件中,能證明△ABC是直角三角形的有 (多選、錯選不得分).
①∠A+∠B=90°
②AB2=AC2+BC2
③
④CD2=ADBD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com