【題目】如圖,己知正方形ABCD的邊長為4, P是對角線BD上一點,PE⊥BC于點E, PF⊥CD于點F,連接AP, EF.給出下列結(jié)論:①PD=EC:②四邊形PECF的周長為8;③△APD一定是等腰三角形:④AP=EF;⑤EF的最小值為;⑥AP⊥EF.其中正確結(jié)論的序號為(

A. ①②④⑤⑥B. ①②④⑤

C. ②④⑤D. ②④⑤⑥

【答案】A

【解析】

根據(jù)正方形的性質(zhì)即可判斷.

PEBC于點E, PFCD,∴四邊形ECFP是矩形,故PF=EC,∵∠PDF=45°,故①PD=EC正確;四邊形PECF的周長為PE+EC+PF+FC=BE+EC+DF+FC=BC+CD=8,故②正確;③△APD當(dāng)AD=DPAP=DP時,是等腰三角形,故錯誤;連接PC,可知EF=PC,易證△ADP≌△CDP,故EF=AP正確;由AP=EF可知,EF最小值為APBD時,即AP=,故EF最小值為正確,故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】折疊矩形ABCD,使點D落在BC邊上的點F處.

1)求證:ABF∽△FCE

2)若DC8,CF4,求矩形ABCD的面積S

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知圓錐底面半徑r=10cm,母線長為40cm.

(1)求它的側(cè)面展開圖的圓心角和表面積.

(2)若一只甲蟲從A點出發(fā)沿著圓錐側(cè)面行到母線SA的中點B,請你動腦筋想一想它所走的最短路線是多少?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線軸交于點A.

1A點的坐標(biāo)為 .

2)直線交于點B,若以O、A、B、C為頂點的四邊形是平行四邊形,求點C的坐標(biāo) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,直線y=x+my=在第一象限交于點A,且與x軸交于點C,AB⊥x軸,垂足為B,且SAOB=1.

(1)求m的值;

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知M=3a2-2ab+b2 , N=2a2+ab-3b2

1)化簡2M-3N;

2)若27a-12+3|b+1|=0,求2M-3N的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一條數(shù)軸在原點和點處各折一下,得到一條折線數(shù)軸,圖中點表示-12,點表示10,點表示20,我們稱點和點在數(shù)軸上相距32個長度單位.動點從點出發(fā),以2單位/秒的速度沿著折線數(shù)軸的正方向運動,從點運動到點期間速度變?yōu)樵瓉淼囊话,之后立刻恢?fù)原速;同時,動點從點出發(fā),以1單位/秒的速度沿著折線數(shù)軸的負(fù)方向運動,從點運動到點期間速度變?yōu)樵瓉淼膬杀,之后也立刻恢?fù)原速.設(shè)運動的時間為秒.則:

1)動點從點運動至點需要時間多少秒?

2)若,兩點在點處相遇,則點在折線數(shù)軸上所表示的數(shù)是多少?

3)求當(dāng)為何值時,兩點在數(shù)軸上相距的長度與、兩點在數(shù)軸上相距的長度相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠ADC90°,AD4cm,CD3cmAB13cm,BC12cm,求這個四邊形的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,對角線AC、BD相交于點OE、FAC上的兩點,當(dāng)E、F滿足下列哪個條件時,四邊形DEBF不一定是平行四邊形( 。

A.ADE=CBFB.ABE=CDFC.DE=BFD.OE=OF

查看答案和解析>>

同步練習(xí)冊答案