【題目】如圖,AB是⊙O的直徑,DF⊥AB于點(diǎn)D,交弦AC于點(diǎn)E,F(xiàn)C=FE.
(1)求證:FC是⊙O的切線;
(2)若⊙O的半徑為5,cos∠ECF= ,求弦AC的長(zhǎng).
【答案】
(1)證明:連接OC.
∵FC=FE(已知),
∴∠FCE=∠FEC(等邊對(duì)等角);
又∵∠AED=∠FEC(對(duì)頂角相等),
∴∠FCE=∠AED(等量代換);
∵OA=OC,
∴∠OAC=∠OCA(等邊對(duì)等角);
∴∠FCE+∠OCA=∠AED+∠OAC;
∵DF⊥AB,
∴∠ADE=90°,
∴∠FCE+∠OCA=90°,即FC⊥OC,
∴FC是⊙O的切線
(2)解:連接BC.
∵AB是⊙O的直徑,⊙O的半徑為5,
∴∠ACB=90°(直徑所對(duì)的圓周角是直角),AB=2OA=10,
∴∠A+∠ABC=90°.
∵DF⊥AB,
∴∠A+∠AED=90°,
∴∠A+∠ABC=∠A+∠AED,即∠ABC=∠AED;
由(1)知,∠AED=∠FEC=∠ECF,
∴BC=ABcos∠ABC=ABcos∠ECF=10× =4,
∴AC= = =2 .
【解析】(1)連接OC.欲證FC是⊙O的切線,只需證明FC⊥OC即可;(2)連接BC.利用(1)中的∠AED=∠FEC=∠ECF、圓周角定理求得BC=ABcos∠ABC=ABcos∠ECF=10× =4;然后在直角三角形ABC中利用勾股定理求得AC的長(zhǎng)度即可.
【考點(diǎn)精析】掌握勾股定理的概念和圓周角定理是解答本題的根本,需要知道直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于拋物線y=x2﹣2x+1,下列說(shuō)法錯(cuò)誤的是( 。
A.開(kāi)口向上
B.與x軸有兩個(gè)重合的交點(diǎn)
C.對(duì)稱軸是直線x=1
D.當(dāng)x>1時(shí),y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,經(jīng)過(guò)點(diǎn)A的直線y=﹣ x+b與拋物線的另一個(gè)交點(diǎn)為D.
(1)若點(diǎn)D的橫坐標(biāo)為2,求拋物線的函數(shù)解析式;
(2)若在第三象限內(nèi)的拋物線上有點(diǎn)P,使得以A、B、P為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)P的坐標(biāo);
(3)在(1)的條件下,設(shè)點(diǎn)E是線段AD上的一點(diǎn)(不含端點(diǎn)),連接BE.一動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿線段BE以每秒1個(gè)單位的速度運(yùn)動(dòng)到點(diǎn)E,再沿線段ED以每秒 個(gè)單位的速度運(yùn)動(dòng)到點(diǎn)D后停止,問(wèn)當(dāng)點(diǎn)E的坐標(biāo)是多少時(shí),點(diǎn)Q在整個(gè)運(yùn)動(dòng)過(guò)程中所用時(shí)間最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用水平線和豎起線將平面分成若干個(gè)邊長(zhǎng)為1的小正方形格子,小正方形的頂點(diǎn)稱為格點(diǎn),以格點(diǎn)為頂點(diǎn)的多邊形稱為格點(diǎn)多邊形.設(shè)格點(diǎn)多邊形的面積為S,該多邊形各邊上的格點(diǎn)個(gè)數(shù)和為a,內(nèi)部的格點(diǎn)個(gè)數(shù)為b,則S= a+b﹣1(史稱“皮克公式”).
小明認(rèn)真研究了“皮克公式”,并受此啟發(fā)對(duì)正三角形網(wǎng)格中的類似問(wèn)題進(jìn)行探究:正三角形網(wǎng)格中每個(gè)小正三角形面積為1,小正三角形的頂點(diǎn)為格點(diǎn),以格點(diǎn)為頂點(diǎn)的多邊形稱為格點(diǎn)多邊形,下圖是該正三角形格點(diǎn)中的兩個(gè)多邊形:
根據(jù)圖中提供的信息填表:
格點(diǎn)多邊形各邊上的格點(diǎn)的個(gè)數(shù) | 格點(diǎn)多邊形內(nèi)部的格點(diǎn)個(gè)數(shù) | 格點(diǎn)多邊形的面積 | |
多邊形1 | 8 | 1 | |
多邊形2 | 7 | 3 | |
… | … | … | … |
一般格點(diǎn)多邊形 | a | b | S |
則S與a、b之間的關(guān)系為S=(用含a、b的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等邊△ABC的邊長(zhǎng)為2,P是BC邊上的任一點(diǎn)(與B、C不重合),連接AP,以AP為邊向兩側(cè)作等邊△APD和等邊△APE,分別與邊AB、AC交于點(diǎn)M、N(如圖1).
(1)求證:AM=AN;
(2)設(shè)BP=x.
①若BM= ,求x的值;
②求四邊形ADPE與△ABC重疊部分的面積S與x之間的函數(shù)關(guān)系式以及S的最小值;
③連接DE分別與邊AB、AC交于點(diǎn)G、H(如圖2).當(dāng)x為何值時(shí),∠BAD=15°?此時(shí),以DG、GH、HE這三條線段為邊構(gòu)成的三角形是什么特殊三角形,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的布袋里裝有4個(gè)大小,質(zhì)地都相同的乒乓球,球面上分別標(biāo)有數(shù)字1,﹣2,3,﹣4,小明先從布袋中隨機(jī)摸出一個(gè)球(不放回去),再?gòu)氖O碌?個(gè)球中隨機(jī)摸出第二個(gè)乒乓球.
(1)共有種可能的結(jié)果.
(2)請(qǐng)用畫樹(shù)狀圖或列表的方法求兩次摸出的乒乓球的數(shù)字之積為偶數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=﹣(x﹣1)2+5,當(dāng)m≤x≤n且mn<0時(shí),y的最小值為2m,最大值為2n,則m+n的值為( 。
A.
B.2
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,已知AD>AB.
(1)實(shí)踐與操作:作∠BAD的平分線交BC于點(diǎn)E,在AD上截取AF=AB,連接EF;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)猜想并證明:猜想四邊形ABEF的形狀,并給予證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com