【題目】小明從A地向南偏東m°(0<m<90)的方向行走到B地,然后向左轉(zhuǎn)30°行走到C地,則下面表述中,正確的個數(shù)是( )
①B可能在C的北偏西m°方向;
②當m<60時,B在C的北偏西(m+30)°方向;
③B不可能在C的南偏西m°方向;
④當m>60時,B在C的南偏西(150-m)°方向
A. 1B. 2C. 3D. 4
【答案】B
【解析】
分三種情況討論:①當0°<m<60°時;②當m=60°時;③當60°<m<90°時;分別畫出圖形,根據(jù)方位角的知識即可解決問題.
分三種情況討論:①當0°<m<60°時,如圖1.
∵0°<m<60°,∴30°<m+30°<90°,∴∠MCB= (m+30)°,∴B在C的北偏西(m+30)°方向,故②正確;
∵m+30>m,∴B不可能在C的北偏西m°方向;∴①錯誤;
②當m=60°時,如圖2,m+30°=90°,∴∠MCB= 90°,∴B在C的正西方向;
③當60°<m<90°時,如圖3.
∵60°<m<90°,∴90°<m+30°<120°,∴∠BCN= 180°-(m+30°)=(150-m)°,∴B在C的南偏西(150-m)°方向,故④正確.
當150-m= m時,解得:m=75°,∴當m=75°時,B在C的南偏西m°方向,故③錯誤.
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC在網(wǎng)格中(網(wǎng)格中每個小正方形的邊長均為1)依次進行位似變換、軸對稱變換和平移變換后得到△A3B3C3 .
(1)△ABC與△A1B1C1的位似比等于;
(2)在網(wǎng)格中畫出△A1B1C1關于y軸的軸對稱圖形△A2B2C2;
(3)請寫出△A3B3C3是由△A2B2C2怎樣平移得到的?
(4)設點P(x,y)為△ABC內(nèi)一點,依次經(jīng)過上述三次變換后,點P的對應點的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形ABCD中,E、F分別為BC、CD的中點,AE與BF相交于點G.
(1)如圖1,求證:AE⊥BF;
(2)如圖2,將△BCF沿BF折疊,得到△BPF,延長FP交BA的延長線于點Q,若AB=4,求QF的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們已經(jīng)知道,有一個內(nèi)角是直角的三角形.其中直角所在的兩條邊叫直角邊,直角所對的邊叫斜邊.數(shù)學家已發(fā)現(xiàn)在一個直角三角形中,兩條直角邊邊長的平方和等于斜邊長的平方.如果設直角三角形的兩條直角邊長度分別是和,斜邊長度是,那么可以用數(shù)學語言表達為:.
(1)在圖中,若,,則等于多少;
(2)觀察圖,利用面積與代數(shù)恒等式的關系,試說明的正確性.其中兩個相同的直角三角形邊、在一條直線上;
(3)如圖③所示,折疊長方形的一邊,使點落在邊的點處,已知,,利用上面的結(jié)論求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=5,BC=3,AC=4,點E,F(xiàn)分別是AB,BC的中點.以下結(jié)論錯誤的是( )
A.△ABC是直角三角形
B.AF是△ABC的中位線
C.EF是△ABC的中位線
D.△BEF的周長為6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線l1:y=﹣x2+2x+3與x軸交于點A、B(點A在點B左邊),與y軸交于點C,拋物線l2經(jīng)過點A,與x軸的另一個交點為E(4,0),與y軸交于點D(0,﹣2).
(1)求拋物線l2的解析式;
(2)點P為線段AB上一動點(不與A、B重合),過點P作y軸的平行線交拋物線l1于點M,交拋物線l2于點N.
①當四邊形AMBN的面積最大時,求點P的坐標;
②當CM=DN≠0時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠B=∠AFE,EA是∠BEF的平分線,求證:
(1)△ABE≌△AFE;
(2)∠FAD=∠CDE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com