【題目】如圖,射線(xiàn)交一圓于點(diǎn),,射線(xiàn)交該圓于點(diǎn),,且 .
(1)判斷與的數(shù)量關(guān)系.(不必證明)
(2)利用尺規(guī)作圖,分別作線(xiàn)段的垂直平分線(xiàn)與的平分線(xiàn),兩線(xiàn)交于點(diǎn)(保留作圖痕跡,不寫(xiě)作法),求證:平分.
【答案】(1)AC=AE;(2)圖見(jiàn)解析,證明見(jiàn)解析
【解析】
(1)作OP⊥AM,OQ⊥AN于Q,連接AO,BO,DO.證△APO≌△AQO,由BC=DE,得CP=EQ后得證;
(2)同AC=AE得∠ECM=∠CEN,由CE=EF得∠FCE=∠FEC=∠MCE=∠CEN得證.
證明:(1)作OP⊥AM于P,OQ⊥AN于Q,連接AO,BO,DO.
∵,
∴BC=DE,
∴BP=DQ,
又∵OB=OD,
∴△OBP≌△ODQ,
∴OP=OQ.
∴BP=DQ=CP=EQ.
直角三角形APO和AQO中,
AO=AO,OP=OQ,
∴△APO≌△AQO.
∴AP=AQ.
∵CP=EQ,
∴AC=AE.
(2)作圖如圖所示
證明:∵AC=AE,∴,
∴, 由于AF是CE的垂直平分線(xiàn),且CF平分,
∴CF=EF.
∴
因此EF平分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】教室里的飲水機(jī)接通電源就進(jìn)入自動(dòng)程序,開(kāi)機(jī)加熱時(shí)每分鐘上升10℃,加熱到100℃停止加熱,水溫開(kāi)始下降,此時(shí)水溫(℃)與開(kāi)機(jī)后用時(shí)()成反比例關(guān)系,直至水溫降至30℃,飲水機(jī)關(guān)機(jī),飲水機(jī)關(guān)機(jī)后即刻自動(dòng)開(kāi)機(jī),重復(fù)上述自動(dòng)程序.若在水溫為30℃時(shí)接通電源,水溫(℃)與時(shí)間()的關(guān)系如圖所示:
(1)分別寫(xiě)出水溫上升和下降階段與之間的函數(shù)關(guān)系式;
(2)怡萱同學(xué)想喝高于50℃的水,請(qǐng)問(wèn)她最多需要等待多長(zhǎng)時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)()過(guò),兩點(diǎn),將點(diǎn)B到該拋物線(xiàn)對(duì)稱(chēng)軸的距離記作,且滿(mǎn)足,則實(shí)數(shù)的取值范圍是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=BC,D為AB邊的中點(diǎn),連接CD,點(diǎn)P為BC邊上一點(diǎn),把△PBD沿PD翻折,點(diǎn)B落在點(diǎn)E處,設(shè)PE交AC于F.
(1)如圖1,求證:△PCF的周長(zhǎng)=CD.
(2)若點(diǎn)P為BC邊的延長(zhǎng)線(xiàn)上一點(diǎn),(1)中結(jié)論是否仍然成立,若成立,請(qǐng)證明;若不成立,線(xiàn)段PC、CF、PF、CD之間是否存在其它的數(shù)量關(guān)系,畫(huà)出圖形并證明.
(3)如圖2,設(shè)DE交AC于G.若∠FPC=30°,CD=3,直接寫(xiě)出FG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等邊和等邊中,,點(diǎn)P在的高上(點(diǎn)與點(diǎn)不重合),點(diǎn)在點(diǎn)的左側(cè),連接,.
(1)求證:;
(2)當(dāng)點(diǎn)與點(diǎn)重合時(shí),延長(zhǎng)交于點(diǎn),請(qǐng)你在圖2中作出圖形,并求出的長(zhǎng);
(3)直接寫(xiě)出線(xiàn)段長(zhǎng)度的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線(xiàn)與軸交于、兩點(diǎn),與軸交于點(diǎn),其頂點(diǎn)為點(diǎn),點(diǎn)的坐標(biāo)為(0,-1),該拋物線(xiàn)與交于另一點(diǎn),連接.
(1)求該拋物線(xiàn)的解析式,并用配方法把解析式化為的形式;
(2)若點(diǎn)在上,連接,求的面積;
(3)一動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿平行于軸方向向上運(yùn)動(dòng),連接,,設(shè)運(yùn)動(dòng)時(shí)間為秒(>0),在點(diǎn)的運(yùn)動(dòng)過(guò)程中,當(dāng)為何值時(shí),?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在平面直角坐標(biāo)系中,直線(xiàn):與軸交于點(diǎn),經(jīng)過(guò)點(diǎn)的拋物線(xiàn)的對(duì)稱(chēng)軸是.
(1)求拋物線(xiàn)的解析式.
(2)平移直線(xiàn)經(jīng)過(guò)原點(diǎn),得到直線(xiàn),點(diǎn)是直線(xiàn)上任意一點(diǎn),軸于點(diǎn),軸于點(diǎn),若點(diǎn)在線(xiàn)段上,點(diǎn)在線(xiàn)段的延長(zhǎng)線(xiàn)上,連接,,且.求證:.
(3)若(2)中的點(diǎn)坐標(biāo)為,點(diǎn)是軸上的點(diǎn),點(diǎn)是軸上的點(diǎn),當(dāng)時(shí),拋物線(xiàn)上是否存在點(diǎn),使四邊形是矩形?若存在,請(qǐng)求出點(diǎn)的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)(a≠0)與y軸交與點(diǎn)C(0,3),與x軸交于A、B兩點(diǎn),點(diǎn)B坐標(biāo)為(4,0),拋物線(xiàn)的對(duì)稱(chēng)軸方程為x=1.
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)M從A點(diǎn)出發(fā),在線(xiàn)段AB上以每秒3個(gè)單位長(zhǎng)度的速度向B點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)N從B點(diǎn)出發(fā),在線(xiàn)段BC上以每秒1個(gè)單位長(zhǎng)度的速度向C點(diǎn)運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng),設(shè)△MBN的面積為S,點(diǎn)M運(yùn)動(dòng)時(shí)間為t,試求S與t的函數(shù)關(guān)系,并求S的最大值;
(3)在點(diǎn)M運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使△MBN為直角三角形?若存在,求出t值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(xiàn)y=x﹣2與x軸交于點(diǎn)B,與y軸交于點(diǎn)C,二次函數(shù)y=x2+bx+c的圖象經(jīng)過(guò)B,C兩點(diǎn),且與x軸的負(fù)半軸交于點(diǎn)A.
(1)直接寫(xiě)出:b的值為 ;c的值為 ;點(diǎn)A的坐標(biāo)為 ;
(2)點(diǎn)M是線(xiàn)段BC上的一動(dòng)點(diǎn),動(dòng)點(diǎn)D在直線(xiàn)BC下方的二次函數(shù)圖象上.設(shè)點(diǎn)D的橫坐標(biāo)為m.
①如圖1,過(guò)點(diǎn)D作DM⊥BC于點(diǎn)M,求線(xiàn)段DM關(guān)于m的函數(shù)關(guān)系式,并求線(xiàn)段DM的最大值;
②若△CDM為等腰直角三角形,直接寫(xiě)出點(diǎn)M的坐標(biāo) .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com