若一次函數(shù)是常數(shù))與是常數(shù)),滿(mǎn)足,則稱(chēng)這兩函數(shù)是對(duì)稱(chēng)函數(shù)
【小題1】當(dāng)函數(shù)是對(duì)稱(chēng)函數(shù),求的值;
【小題2】在平面直角坐標(biāo)系中,一次函數(shù)圖象與軸交于點(diǎn)、與軸交于點(diǎn),點(diǎn)與點(diǎn) 關(guān)于x軸對(duì)稱(chēng),過(guò)點(diǎn)的直線(xiàn)解析式是,求證:函數(shù)是對(duì)稱(chēng)函數(shù)


【小題1】由題意可知,解得…………………………………… 2分
【小題2】A(,0),B(0,3),           ……………………………………  3分
∵點(diǎn)C與點(diǎn)B 關(guān)于x軸對(duì)稱(chēng),
∴C(0,-3),                       ……………………………………  5分
由題意可得                  ……………………………………  6分
解得 故y=-2x-3,             ……………………………………  7分
∵2+(-2)=0,3+(-3)=0,
∴函數(shù)y=2x+3與y=kx+b是對(duì)稱(chēng)函數(shù).           ……………………………………  8分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、設(shè)y是z的一次函數(shù),y=k1z+b,(k1、b是常數(shù),k1≠0).z是x的正比例函數(shù)z=k2x(k2是常數(shù),k2≠0)
(1)說(shuō)明y是x的什么函數(shù);
(2)若x=0時(shí)y=3,x=3時(shí)y=0,求y與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•海滄區(qū)質(zhì)檢)若一次函數(shù)y=a1x+b1(a1≠0,a1、b1是常數(shù))與y=a2x+b2(a2≠0,a2、b2是常數(shù)),滿(mǎn)足a1+a2=0且b1+b2=0,則稱(chēng)這兩函數(shù)是對(duì)稱(chēng)函數(shù).
(1)當(dāng)函數(shù)y=mx-3與y=2x+n是對(duì)稱(chēng)函數(shù),求m和n的值;
(2)在平面直角坐標(biāo)系中,一次函數(shù)y=2x+3圖象與x軸交于點(diǎn)A、與y軸交于點(diǎn)B,點(diǎn)C與點(diǎn)B 關(guān)于x軸對(duì)稱(chēng),過(guò)點(diǎn)A、C的直線(xiàn)解析式是y=kx+b,求證:函數(shù)y=2x+3與y=kx+b是對(duì)稱(chēng)函數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建廈門(mén)海滄區(qū)九年級(jí)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

若一次函數(shù)是常數(shù))與是常數(shù)),滿(mǎn)足,則稱(chēng)這兩函數(shù)是對(duì)稱(chēng)函數(shù)

1.當(dāng)函數(shù)是對(duì)稱(chēng)函數(shù),求的值;

2.在平面直角坐標(biāo)系中,一次函數(shù)圖象與軸交于點(diǎn)、與軸交于點(diǎn),點(diǎn)與點(diǎn) 關(guān)于x軸對(duì)稱(chēng),過(guò)點(diǎn)、的直線(xiàn)解析式是,求證:函數(shù)是對(duì)稱(chēng)函數(shù)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若一次函數(shù)是常數(shù))與是常數(shù)),滿(mǎn)足,則稱(chēng)這兩函數(shù)是對(duì)稱(chēng)函數(shù).

(1)當(dāng)函數(shù)是對(duì)稱(chēng)函數(shù),求的值;

(2)在平面直角坐標(biāo)系中,一次函數(shù)圖象與軸交于點(diǎn)、與軸交于點(diǎn),點(diǎn)與點(diǎn) 關(guān)于x軸對(duì)稱(chēng),過(guò)點(diǎn)、的直線(xiàn)解析式是,求證:函數(shù)是對(duì)稱(chēng)函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案