【題目】下列由四舍五入得來的近似數(shù),各精確到哪一位,各有幾個有效數(shù)字?

(1)21.80 (2)2.60萬

【答案】1)精確到百分位,4個有效數(shù)字,2)精確到百位,3個有效數(shù)字.

【解析】試題分析:一個近似數(shù)的有效數(shù)字是從左邊第一個不是0的數(shù)字起,后面所有的數(shù)字都是這個數(shù)的有效數(shù)字;數(shù)字的最后一位是哪位,就是精確到哪一位.

試題解析:解:121.80精確到百分位,有4個有效數(shù)字;

22.60=2.60×104 精確到百位,3個有效數(shù)字

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】把0.0975取近似數(shù),保留兩個有效數(shù)字的近似值是( )

A. 0.10 B. 0.097 C. 0.098 D. 0.98

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某大型企業(yè)為了保護環(huán)境,準備購買A、B兩種型號的污水處理設(shè)備共8臺,用于同時治理不同成分的污水,若購買A型2臺、B型3臺需54萬,購買A型4臺、B型2臺需68萬元.

(1)求出A型、B型污水處理設(shè)備的單價;

(2)經(jīng)核實,一臺A型設(shè)備一個月可處理污水220噸,一臺B型設(shè)備一個月可處理污水190噸,如果該企業(yè)每月的污水處理量不低于1565噸,請你為該企業(yè)設(shè)計一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某水平地面上建筑物的高度為AB,在點D和點F處分別豎立高是2米的標桿CD和EF,兩標桿相隔52米,并且建筑物AB、標桿CD和EF在同一豎直平面內(nèi),從標桿CD后退2米到點G處,在G處測得建筑物頂端A和標桿頂端C在同一條直線上;從標桿FE后退4米到點H處,在H處測得建筑物頂端A和標桿頂端E在同一條直線上,則建筑物的高是__________米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知開口向上的拋物線yax2-2x+|a|-4經(jīng)過點(0,-3).

(1)確定此拋物線的解析式;

(2)x取何值時,y有最小值,并求出這個最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列是某同學在一次作業(yè)中的計算摘錄: ①3a+2b=5ab,②4m3n﹣5mn3=﹣m3n,③4x3(﹣2x2)=﹣6x5 , ④4a3b÷(﹣2a2b)=﹣2a,⑤(a32=a5 , ⑥(﹣a)3÷(﹣a)=﹣a2 , 其中正確的個數(shù)有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】0.00100精確到____位(或精確到______),有效數(shù)字是____________;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2﹣5ax+2(a≠0)與y軸交于點C,與x軸交于點A(1,0)和點B.

(1)求拋物線的解析式;

(2)求直線BC的解析式;

(3)若點N是拋物線上的動點,且點N在第四象限內(nèi),過點N作NH⊥x軸,垂足為H,以B,N,H為頂點的三角形是否能夠與△OBC相似?若能,請求出所有符合條件點N的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O中,點A中點,BD為直徑,過AAPBCDB的延長線于點P

1)求證:PA⊙O的切線;

2)若,AB=6,求sinABD的值.

查看答案和解析>>

同步練習冊答案