【題目】 如圖,AB為⊙O的弦,C為劣弧AB的中點(diǎn).
(1)若⊙O的半徑為5,AB=8,求tan∠BAC;
(2)若∠DAC=∠BAC,且點(diǎn)D在⊙O的外部,判斷AD與⊙O的位置關(guān)系,并說(shuō)明理由.
【答案】(1);(2)AD與⊙O相切
【解析】
試題分析:(1)根據(jù)垂徑定理得到直角三角形,分別求出要求正切值的角的對(duì)邊與鄰邊,就可以求其正切值;
(2)證明直線(xiàn)與圓相切可以轉(zhuǎn)化為證明直線(xiàn)垂直經(jīng)過(guò)切點(diǎn)的半徑.
解:(1)如圖,∵AB為⊙O的弦,C為劣弧AB的中點(diǎn),AB=8,
∴OC⊥AB于E,
∴,
又∵AO=5,
∴,
∴CE=OC﹣OE=2,
在Rt△AEC中,;
(2)AD與⊙O相切.理由如下:
∵OA=OC,
∴∠C=∠OAC,
∵由(1)知OC⊥AB,
∴∠C+∠BAC=90°.
又∵∠BAC=∠DAC,
∴∠OAC+∠DAC=90°,
∴AD與⊙O相切.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)北京市統(tǒng)計(jì)局的2013-2016年空氣質(zhì)量的相關(guān)數(shù)據(jù),繪制統(tǒng)計(jì)圖如下:
(1)由統(tǒng)計(jì)圖中的信息可知道,北京全年市區(qū)空氣質(zhì)量達(dá)到二級(jí)和好于二級(jí)的天數(shù)與上一年相比,增加最多的是 年,增加了 天;
(2)表1是根據(jù)《中國(guó)環(huán)境發(fā)展報(bào)告(2017)》公布的數(shù)據(jù)繪制的2016年十個(gè)城市空氣質(zhì)量達(dá)到二級(jí)和好于二級(jí)的天數(shù)點(diǎn)全年天數(shù)百分比的統(tǒng)計(jì)表,請(qǐng)將表1中的空缺部分補(bǔ)充完整(精確到1%).
(表1)2016年十個(gè)城市空氣質(zhì)量達(dá)到二級(jí)和好于二級(jí)的天數(shù)占全年天數(shù)百分比統(tǒng)計(jì)表
城市 | 北京 | 上海 | 天津 | 昆明 | 杭州 | 廣州 | 南京 | 成都 | 沈陽(yáng) | 西寧 |
百分比(%) | 91 | 84 | 100 | 89 | 96 | 86 | 86 | 90 | 77 |
(3)根據(jù)表1中的數(shù)據(jù)將十個(gè)城市劃分為三個(gè)組,百分比不低于95%的為組,不低于85%且低于95%的為組,低于85%的為組,按此標(biāo)準(zhǔn),組城市數(shù)量在這十個(gè)城市中所占的百分比為 ;請(qǐng)你補(bǔ)全扇形統(tǒng)計(jì)圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了培養(yǎng)學(xué)生的興趣,我市某小學(xué)決定再開(kāi)設(shè)A.舞蹈,B.音樂(lè),C.繪畫(huà),D.書(shū)法四個(gè)興趣班,為了解學(xué)生對(duì)這四個(gè)項(xiàng)目的興趣愛(ài)好,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖1,2所示的統(tǒng)計(jì)圖,且結(jié)合圖中信息解答下列問(wèn)題:
(1)在這次調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)請(qǐng)將兩幅統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若本校一共有2000名學(xué)生,請(qǐng)估計(jì)喜歡“音樂(lè)”的人數(shù);
(4)若調(diào)查到喜歡“書(shū)法”的4名學(xué)生中有2名男生,2名女生,現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法,求出剛好抽到相同性別的學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點(diǎn)E,交BC于點(diǎn)D,過(guò)點(diǎn)E做直線(xiàn)l∥BC.
(1)判斷直線(xiàn)l與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若∠ABC的平分線(xiàn)BF交AD于點(diǎn)F,求證:BE=EF;
(3)在(2)的條件下,若DE=4,DF=3,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在上學(xué)的路上(假定從家到校只有這一條路)發(fā)現(xiàn)忘帶眼鏡,立刻停下,往家里打電話(huà),媽媽接到電話(huà)后立刻帶上眼鏡趕往學(xué)校.同時(shí),小明原路返回,兩人相遇后小明立即趕往學(xué)校,媽媽回家,媽媽要15分鐘到家,小明再經(jīng)過(guò)3分鐘到校.小明始終以100米/分的速度步行,小明和媽媽之間的距離y(米)與小明打完電話(huà)后的步行時(shí)間t(分)之間函數(shù)圖象如圖所示,則下列結(jié)論:①打電話(huà)時(shí),小明與媽媽的距離為1250米;②打完電話(huà)后,經(jīng)過(guò)23分鐘小明到達(dá)學(xué)校;③小明與媽媽相遇后,媽媽回家的速度為150米/分;④小明家與學(xué)校的距離為2550米.其中正確的有 .(把正確的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】24.在矩形ABCD中,將點(diǎn)A翻折到對(duì)角線(xiàn)BD上的點(diǎn)M處,折痕BE交AD于點(diǎn)E.將點(diǎn)C翻折到對(duì)角線(xiàn)BD上的點(diǎn)N處,折痕DF交BC于點(diǎn)F.
(1)求證:四邊形BFDE為平行四邊形;
(2)若四邊形BFDE為菱形,且AB=2,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D、E分別是邊BC、AC的中點(diǎn),過(guò)點(diǎn)A作AF∥BC交DE的延長(zhǎng)線(xiàn)于F點(diǎn),連接AD、CF.
(1)求證:四邊形ADCF是平行四邊形;
(2)當(dāng)△ABC滿(mǎn)足什么條件時(shí),四邊形ADCF是正方形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某氣球內(nèi)充滿(mǎn)一定質(zhì)量的氣體,當(dāng)溫度不變時(shí),氣球內(nèi)氣體的氣壓p(kPa)是氣體體積V(m3)的反比例函數(shù),其圖象如圖所示.
(1)寫(xiě)出這一函數(shù)的表達(dá)式.
(2)當(dāng)氣體體積為1 m3時(shí),氣壓是多少?
(3)當(dāng)氣球內(nèi)的氣壓大于140 kPa時(shí),氣球?qū)⒈?/span>,為了安全考慮,氣體的體積應(yīng)不小于多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,,點(diǎn)E在邊BC上,,將沿DE對(duì)折至,延長(zhǎng)EF交邊AB于點(diǎn)C,連接DG,BF,給出以下結(jié)論:≌;;;∽,其中所有正確結(jié)論的個(gè)數(shù)是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com