【題目】關(guān)于x的一元二次方程x2 x+sinα=0有兩個(gè)相等的實(shí)數(shù)根,則銳角α等于(  )
A.15°
B.30°
C.45°
D.60°

【答案】B
【解析】解:∵關(guān)于x的一元二次方程x2 x+sinα=0有兩個(gè)相等的實(shí)數(shù)根, ∴△= ﹣4sinα=2﹣4sinα=0,解得:sinα= ,
∵α為銳角,
∴α=30°.
故選B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用求根公式和特殊角的三角函數(shù)值的相關(guān)知識(shí)可以得到問題的答案,需要掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根2、當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根3、當(dāng)△<0時(shí),一元二次方程沒有實(shí)數(shù)根;分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點(diǎn)B作⊙O的切線交CD的延長線于點(diǎn)E,BC=6, .求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,∠BAD的平分線AE交BC于點(diǎn)E,且BE=3,若平行四邊形ABCD的周長是16,則EC等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國古籍《周髀算經(jīng)》中早有記載“勾三股四弦五”,下面我們來探究兩類特殊的勾股數(shù).通過觀察完成下面兩個(gè)表格中的空格(以下a、b、c為Rt△ABC的三邊,且a<b<c):

表一

a

b

c

3

4

5

5

12

13

7

24

25

9

41

表二

a

b

c

6

8

10

8

15

17

10

24

26

12

41

(1)仔細(xì)觀察,表一中a為大于1的奇數(shù),此時(shí)b、c的數(shù)量關(guān)系是   ,a、b、c之間的數(shù)量關(guān)系是   

(2)仔細(xì)觀察,表二中a為大于4的偶數(shù),此時(shí)b、c的數(shù)量關(guān)系是   ,a、b、c之間的數(shù)量關(guān)系是   ;

(3)我們還發(fā)現(xiàn),表一中的三邊長“3,4,5”與表二中的“6,8,10”成倍數(shù)關(guān)系,表一中的“5,12,13”與表二中的“10,24,26”恰好也成倍數(shù)關(guān)系……請(qǐng)直接利用這一規(guī)律計(jì)算:在Rt△ABC中,當(dāng),b=時(shí),斜邊c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線y=﹣kx+k﹣3與直線y=kx在同一坐標(biāo)系中的大致圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠A=30°,BC=2 ,以直角邊AC為直徑作⊙O交AB于點(diǎn)D,則圖中陰影部分的面積是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分8分)如圖,南北方向線MN以西為我國領(lǐng)海,以東為公海.上午9時(shí)50分,我緝私艇A發(fā)現(xiàn)正東方向有一走私艇C13海里/時(shí)的速度偷偷向我領(lǐng)海駛來,便立即通知正在MN線上巡邏的緝私艇B.已知A,C兩艇的距離是13海里,A,B兩艇的距離是5海里,緝私艇BC艇的距離是12海里,若C艇的速度不變,那么它最早會(huì)在什么時(shí)間進(jìn)入我國領(lǐng)海?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次數(shù)學(xué)測試后,隨機(jī)抽取6名學(xué)生成績?nèi)缦拢?6,85,88,80,88,95,關(guān)于這組數(shù)據(jù)說法錯(cuò)誤的是( )
A.方差是20
B.眾數(shù)是88
C.中位數(shù)是86
D.平均數(shù)是87

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2﹣2x﹣3與x軸交A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),直線l與拋物線交于A、C兩點(diǎn),其中C點(diǎn)的橫坐標(biāo)為2.

(1)求A、B兩點(diǎn)的坐標(biāo)及直線AC的函數(shù)表達(dá)式;
(2)P是線段AC上的一個(gè)動(dòng)點(diǎn),過P點(diǎn)作y軸的平行線交拋物線于E點(diǎn),求線段PE長度的最大值;
(3)點(diǎn)G拋物線上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使A、C、F、G這樣的四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案