某公路防護(hù)堤的橫斷面如下圖所示.已知斜坡的坡度i=1:1,坡面的鉛直高度AC為2m,求斜坡AB的長及其坡角α(答案可保留根號).

解:依據(jù)坡度定義可知tanα=i=1:1=1,
∴α=45°,
∴△ABC是等腰直角三角形,∴BC=AC=2,
∴AB==2m,
答:斜坡AB的長及其坡角α分別是2m和45°.
分析:根據(jù)坡角的正切值等于坡比即可求得坡角的度數(shù),然后解直角三角形求得AB的長即可.
點(diǎn)評:此類應(yīng)用問題盡管題型千變?nèi)f化,但關(guān)鍵是設(shè)法化歸為解直角三角形問題,必要時應(yīng)添加輔助線,構(gòu)造出直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1997•海南)某公路防護(hù)堤的橫斷面如下圖所示.已知斜坡的坡度i=1:1,坡面的鉛直高度AC為2m,求斜坡AB的長及其坡角α(答案可保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1997年海南省中考數(shù)學(xué)試卷(解析版) 題型:解答題

某公路防護(hù)堤的橫斷面如下圖所示.已知斜坡的坡度i=1:1,坡面的鉛直高度AC為2m,求斜坡AB的長及其坡角α(答案可保留根號).

查看答案和解析>>

同步練習(xí)冊答案