【題目】如圖,△ABC的面積為6,AC=3,現(xiàn)將△ABC沿AB所在直線翻折,使點C落在直線AD上的C′處,P為直線AD上的一點,則線段BP的長不可能是(  )

A.3
B.4
C.5.5
D.10

【答案】A
【解析】解:如圖:

過B作BN⊥AC于N,BM⊥AD于M,
∵將△ABC沿AB所在直線翻折,使點C落在直線AD上的C′處,
∴∠C′AB=∠CAB,
∴BN=BM,
∵△ABC的面積等于6,邊AC=3,
×AC×BN=6,
∴BN=4,
∴BM=4,
即點B到AD的最短距離是4,
∴BP的長不小于4,
即只有選項A的3不正確,
故選A.
過B作BN⊥AC于N,BM⊥AD于M,根據(jù)折疊得出∠C′AB=∠CAB,根據(jù)角平分線性質(zhì)得出BN=BM,根據(jù)三角形的面積求出BN,即可得出點B到AD的最短距離是4,得出選項即可.本題考查了折疊的性質(zhì),三角形的面積,角平分線性質(zhì)的應用,解此題的關鍵是求出B到AD的最短距離,注意:角平分線上的點到角的兩邊的距離相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】大于1的正整數(shù)m的三次冪可“分裂”成若干個連續(xù)奇數(shù)的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一個奇數(shù)是2013,則m的值是( )
A.43
B.44
C.45
D.46

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列標志既是軸對稱圖形又是中心對稱圖形的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BF平分∠ABC,AF⊥BF于點F,D為AB的中點,連接DF延長交AC于點E.若AB=10,BC=16,則線段EF的長為
(  )

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB為半圓O的直徑,C為半圓O上一點,連接AC,BC,過點O作OD⊥AC于點D,過點A作半圓O的切線交OD的延長線于點E,連接BD并延長交AE于點F.

(1)求證:AEBC=ADAB;
(2)若半圓O的直徑為10,sin∠BAC= ,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A的坐標為(﹣4,0),直線y= x+n與坐標軸交于點B、C,連接AC,如果∠ACD=90°,則n的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點,與x軸交于點B.

(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標;
(3)設點P為拋物線的對稱軸x=﹣1上的一個動點,求使△BPC為直角三角形的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,F(xiàn)是 上一點,且 = ,連接CF并延長交AD的延長線于點E,連接AC.若∠ABC=105°,∠BAC=25°,則∠E的度數(shù)為( 。

A.45°
B.50°
C.55°
D.60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學活動﹣旋轉(zhuǎn)變換

(1)如圖①,在△ABC中,∠ABC=130°,將△ABC繞點C逆時針旋轉(zhuǎn)50°得到△A′B′C,連接BB′,求∠A′B′B的大。
(2)如圖②,在△ABC中,∠ABC=150°,AB=3,BC=5,將△ABC繞點C逆時針旋轉(zhuǎn)60°得到△A′B′C,連接BB′,以A′為圓心,A′B′長為半徑作圓.
①猜想:直線BB′與⊙A′的位置關系,并證明你的結(jié)論;
②連接A′B,求線段A′B的長度;
(3)如圖③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,將△ABC繞點C逆時針旋轉(zhuǎn)2β角度(0°<2β<180°)得到△A′B′C,連接A′B和BB′,以A′為圓心,A′B′長為半徑作圓,問:角α與角β滿足什么條件時,直線BB′與⊙A′相切,請說明理由,并求此條件下線段A′B的長度(結(jié)果用角α或角β的三角函數(shù)及字母m、n所組成的式子表示)

查看答案和解析>>

同步練習冊答案