【題目】如圖所示,在平面直角坐標(biāo)系中,半徑均為1個(gè)單位長(zhǎng)度的半圓、、,組成一條平滑的曲線(xiàn),點(diǎn)從原點(diǎn)出發(fā),沿這條曲線(xiàn)向右運(yùn)動(dòng),速度為每秒個(gè)單位長(zhǎng)度,則第2019秒時(shí),點(diǎn)的坐標(biāo)是____.
【答案】(2019,-1)
【解析】
根據(jù)速度及半圓的周長(zhǎng)可知點(diǎn)P每秒走個(gè)半圓,分別求出第2、3、4、5、6秒時(shí)點(diǎn)P的坐標(biāo),可得圖象縱坐標(biāo)4秒一循環(huán),橫坐標(biāo)與移動(dòng)的時(shí)間相同,即可得答案.
∵半圓額半徑為1,
∴半圓的周長(zhǎng)為×2×1=,
∵點(diǎn)P運(yùn)動(dòng)速度為每秒個(gè)單位長(zhǎng)度,
∴點(diǎn)P每秒走個(gè)半圓,
∵點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線(xiàn)向右運(yùn)動(dòng),
∴運(yùn)動(dòng)時(shí)間為1秒時(shí),點(diǎn)P的坐標(biāo)為(1,1),
運(yùn)動(dòng)時(shí)間為2秒時(shí),點(diǎn)P的坐標(biāo)為(2,0),
運(yùn)動(dòng)時(shí)間為3秒時(shí),點(diǎn)P的坐標(biāo)為(3,-1),
運(yùn)動(dòng)時(shí)間為4秒時(shí),點(diǎn)P的坐標(biāo)為(4,0),
運(yùn)動(dòng)時(shí)間為5秒時(shí),點(diǎn)P的坐標(biāo)為(5,1),
運(yùn)動(dòng)時(shí)間為6秒時(shí),點(diǎn)P的坐標(biāo)為(6,0),
…,
∴縱坐標(biāo)4秒一循環(huán),橫坐標(biāo)與移動(dòng)的時(shí)間相同,
∵2019÷4=504……3,
∴點(diǎn)P2019的坐標(biāo)為(2019,-1),
故答案為:(2019,-1)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一塊三角形土地,它的底邊BC=100米,高AH=80米,某單位要沿著地邊BC修一座底面是矩形DEFG的大樓,D、G分別在AB、AC的邊上,問(wèn)當(dāng)這個(gè)矩形面積最大時(shí),它的長(zhǎng)與寬各是多少米?面積最大為多少平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校八年級(jí)有800名學(xué)生,在一次跳繩模擬測(cè)試中,從中隨機(jī)抽取部分學(xué)生,根據(jù)其測(cè)試成績(jī)制作了下面兩個(gè)統(tǒng)計(jì)圖,請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:
(1)本次抽取到的學(xué)生人數(shù)為______,扇形統(tǒng)計(jì)圖中的值為______.
(2)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)是_____(分),中位數(shù)是_____(分).
(3)根據(jù)樣本數(shù)據(jù),估計(jì)我校八年級(jí)模擬體測(cè)中得12分的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,E是等腰Rt△ABC邊AC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)E與A、C不重合),以CE為一邊在Rt△ABC作等腰Rt△CDE,連結(jié)AD,BE.我們探究下列圖中線(xiàn)段AD,、線(xiàn)段BE 的長(zhǎng)度關(guān)系及所在直線(xiàn)的位置關(guān)系:
(1)①猜想如圖1中線(xiàn)段BG、線(xiàn)段DE的長(zhǎng)度關(guān)系及所在直線(xiàn)的位置關(guān)系;
②將圖1中的等腰Rt△CDE繞著點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)任意角度,得到如圖2、如圖3情形.請(qǐng)你通過(guò)觀察、測(cè)量等方法判斷①中得到的結(jié)論是否仍然成立,并選取圖2證明你的判斷.
(2)將原題中等腰直角三角形改為直角三角形(如圖4—6),且AC=a,BC=b,CD=ka,CE=kb (ab,k0),第(1)題①中得到的結(jié)論哪些成立,哪些不成立?若成立,以圖5為例簡(jiǎn)要說(shuō)明理由.
(3)在第(2)題圖5中,連結(jié)BD、AE,且a=4,b=3,k=,求BD2+AE2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在等腰△ABC中,∠A=∠B=30°,過(guò)點(diǎn)C作CD⊥AC交AB于點(diǎn)D.
(1)尺規(guī)作圖:過(guò)A,D,C三點(diǎn)作⊙O(只要求作出圖形,保留痕跡,不要求寫(xiě)作法);
(2)求證:BC是過(guò)A,D,C三點(diǎn)的圓的切線(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠1+∠2=180°,∠3=∠B,求證:EF∥BC,請(qǐng)你補(bǔ)充完成下面的推導(dǎo)過(guò)程.
證明:∵∠1+∠2=180°(已知)
∠2=∠4( )
∴∠ +∠4=180°(等量代換)
∴DF∥AB( )
∴∠B=∠FDH( )
∵∠3=∠B( )
∴∠3=∠ ( )
∴EF∥BC( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的兩邊分別在x軸和y軸上,OA=cm,OC=8cm,現(xiàn)有兩動(dòng)點(diǎn)P、Q分別從O、C同時(shí)出發(fā),P在線(xiàn)段OA上沿OA方向以每秒cm的速度勻速運(yùn)動(dòng),Q在線(xiàn)段CO上沿CO方向以每秒1cm的速度勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)用t的式子表示△OPQ的面積S;
(2)求證:四邊形OPBQ的面積是一個(gè)定值,并求出這個(gè)定值;
(3)當(dāng)△OPQ與△PAB和△QPB相似時(shí),拋物線(xiàn)y=x 2+bx+c經(jīng)過(guò)B、P兩點(diǎn),過(guò)線(xiàn)段BP上一動(dòng)點(diǎn)M作y軸的平行線(xiàn)交拋物線(xiàn)于N,當(dāng)線(xiàn)段MN的長(zhǎng)取最大值時(shí),求直線(xiàn)MN把四邊形OPBQ分成兩部分的面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,對(duì)于一個(gè)圖形,通過(guò)兩種不同的方法計(jì)算它的面積,可以得到一個(gè)數(shù)字等式,例如圖1,可以得到(a+2b)(a+b)=a2+3ab+2b2.請(qǐng)解答下問(wèn)題:
(1)寫(xiě)出圖2中所表示的數(shù)學(xué)等式_____;
(2)利用(1)中所得到的結(jié)論,解決下面的問(wèn)題:已知a+b+c=9,ab+bc+ac=26,求a2+b2+c2的值;
(3)小明同學(xué)用2張邊長(zhǎng)為a的正方形、3張邊長(zhǎng)為b的正方形、5張邊長(zhǎng)為a、b的長(zhǎng)方形紙片拼出了一個(gè)長(zhǎng)方形,那么該長(zhǎng)方形較長(zhǎng)一邊的邊長(zhǎng)為多少?
(4)小明同學(xué)又用x張邊長(zhǎng)為a的正方形,y張邊長(zhǎng)為b的正方形,z張邊長(zhǎng)分別為a、b的長(zhǎng)方形紙片拼出了一個(gè)面積為(25a+7b)(2a+5b)長(zhǎng)方形,求9x+10y+6.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com