【題目】如圖,直線y=﹣ x+1與x軸交于點A,與y軸交于點B,拋物線y=﹣x2+bx+c經(jīng)過A,B兩點.
(1)求拋物線的解析式;
(2)點P是第一象限拋物線上的一點,連接PA、PB、PO,若△POA的面積是△POB面積的 倍.
①求點P的坐標(biāo);
②點Q為拋物線對稱軸上一點,請直接寫出QP+QA的最小值;
(3)點M為直線AB上的動點,點N為拋物線上的動點,當(dāng)以點O、B、M、N為頂點的四邊形是平行四邊形時,請直接寫出點M的坐標(biāo).
【答案】
(1)
解:∵直線y=﹣ x+1與x軸交于點A,與y軸交于點B,
∴A(2,0),B(0,1),
∵拋物線y=﹣x2+bx+c經(jīng)過A、B兩點,
∴ ,
∴
∴拋物線解析式為y=﹣x2+ x+1
(2)
解:①由(1)知,A(2,0),B(0,1),
∴OA=2,OB=1,
由(1)知,拋物線解析式為y=﹣x2+ x+1,
∵點P是第一象限拋物線上的一點,
∴設(shè)P(a,﹣a2+ a+1),((a>0,﹣a2+ a+1>0),
∴S△POA= OA×Py= ×2×(﹣a2+ a+1)=﹣a2+ a+1
S△POB= OB×Px= ×1×a= a
∵△POA的面積是△POB面積的 倍.
∴﹣a2+ a+1= × a,
∴a= 或a=﹣ (舍)
∴P( ,1);
②如圖1,
由(1)知,拋物線解析式為y=﹣x2+ x+1,
∴拋物線的對稱軸為x= ,拋物線與x軸的另一交點為C(﹣ ,0),
∵點A與點C關(guān)于對稱軸對稱,
∴QP+QA的最小值就是PC= ;
(3)
①當(dāng)OB為平行四邊形的邊時,MN=OB=1,MN∥OB,
∵點N在直線AB上,
∴設(shè)M(m,﹣ m+1),
∴N(m,﹣m2+ m+1),
∴MN=|﹣m2+ m+1﹣(﹣ m+1)|=|m2﹣2m|=1,
Ⅰ、m2﹣2m=1,
解得,m=1± ,
∴M(1+ , (1﹣ ))或M(1﹣ , (1+ ))
Ⅱ、m2﹣2m=﹣1,
解得,m=1,
∴M(1, );
②當(dāng)OB為對角線時,OB與MN互相平分,交點為H,
∴OH=BH,MH=NH,
∵B(0,1),O(0,0),
∴H(0, ),
設(shè)M(n,﹣ n+1),N(d,﹣d2+ d+1)
∴ ,
∴ 或 ,
∴M(﹣(1+ ), (3+ ))或M(﹣(1﹣ ), (3﹣ ));
即:滿足條件的點M的坐標(biāo)(1+ , (1﹣ ))或(1﹣ ,﹣ (1+ ))或(1, )或M(﹣(1+ ), (3+ ))或M(﹣(1﹣ ), (3﹣ ))
【解析】(1)先確定出點A,B坐標(biāo),再用待定系數(shù)法求出拋物線解析式;(2)設(shè)出點P的坐標(biāo),①用△POA的面積是△POB面積的 倍,建立方程求解即可;②利用對稱性找到最小線段,用兩點間距離公式求解即可;(3)分OB為邊和為對角線兩種情況進(jìn)行求解,①當(dāng)OB為平行四邊形的邊時,用MN∥OB,表示和用MN=OB,建立方程求解;
②當(dāng)OB為對角線時,OB與MN互相平分,交點為H,設(shè)出M,N坐標(biāo)用OH=BH,MH=NH,建立方程組求解即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB為直徑,C為⊙O上一點,過點C作⊙O的切線,與AB的延長線相交于點P,若∠CAB=27°,求∠P的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解下列方程時,配方正確的是( )
A.方程x2﹣6x﹣5=0,可化為(x﹣3)2=4
B.方程y2﹣2y﹣2015=0,可化為(y﹣1)2=2015
C.方程a2+8a+9=0,可化為(a+4)2=25
D.方程2x2﹣6x﹣7=0,可化為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ACB中,∠ACB=90゜,CD⊥AB于D.
(1)求證:∠ACD=∠B;
(2)若AF平分∠CAB分別交CD、BC于E、F,求證:∠CEF=∠CFE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,以Rt△ABC的三邊分別為直徑作半圓,若Rt△ABC三邊長分別為3,x,5,則圖中陰影部分的面積為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將半徑為3cm,圓心角為60°的扇形紙片.AOB在直線l上向右作無滑動的滾動至扇形A′O′B′處,則頂點O經(jīng)過的路線總長 cm(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在下列條件中,不能作為判斷△ABD≌△BAC的條件是( )
A. ∠D=∠C,∠BAD=∠ABC B. ∠BAD=∠ABC,∠ABD=∠BAC
C. BD=AC,∠BAD=∠ABC D. AD=BC,BD=AC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,F是AD的中點,延長BC到點E,使CE=BC,連結(jié)DE,CF。
(1)求證:四邊形CEDF是平行四邊形;
(2)若AB=4,AD=6,∠B=60°,求DE的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示,在△ABC中,∠BAC=60°,AD=AE,BE、CD交于點F,且∠DFE=120°.在BE的延長線上截取ET=DC,連接AT.
(1)求證:∠ADC=∠AET;
(2)求證:AT=AC;
(3)設(shè)BC邊上的中線AP與BE交于Q.求證:∠QAB=∠QBA.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com