【題目】如圖,在中,AB是直徑,AP是過點A的切線,點C在上,點D在AP上,且,延長DC交AB于點E.
(1)求證:.
(2)若的半徑為5,,求的長.(結(jié)果保留)
【答案】(1)見解析;(2).
【解析】
(1)由切線性質(zhì)可得∠EAD=90°,根據(jù)等角的余角相等可證得∠CAE=∠AEC,再用等角對等邊即可得證;
(2)連結(jié)OC,先求得∠AOC=80°,再利用弧長公式計算即可.
(1)證明:∵AB是⊙O的直徑,AP是過點A的切線,
∴∠BAD=90°.
∴∠BAC+∠CAD=90°,∠AED+∠EDA=90°.
∵CA=CD,
∴∠CAD=∠CDA.
∴∠CAE=∠AEC.
∴CA=CE.
(2)解:連結(jié)OC,
∵∠AEC=50°,
∴∠EAC=50°.
∵OC=OA,
∴∠OCA=∠EAC=50°.
∴∠AOC=180°- OCA-∠EAC=80°.
∴的長為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,BC=AC,∠ACB=90°,將△ABC繞著點C順時針旋轉(zhuǎn)α(0≤α≤90°),得到△EFC,EF與AB、AC相交于點D、H,FC與AB相交于點G、AC相交于點D、H,FC與AB相較于點G.
(1)求證:△GBC≌△HEC;
(2)在旋轉(zhuǎn)過程中,當α是多少度時四邊形BCED可以是某種特殊的平行四邊形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠D=120°,將菱形翻折,使點A落在邊CD的中點E處,折痕交邊AD,AB于點G,F,則AF的長為___
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面的材料:
如果函數(shù)滿足:對于自變量的取值范圍內(nèi)的任意,,
(1)若,都有,則稱是增函數(shù);
(2)若,都有,則稱是減函數(shù).
例題:證明函數(shù)是減函數(shù).
證明:設(shè),
.
∵,∴,.∴.即.
∴.∴函數(shù)()是減函數(shù).
根據(jù)以上材料,解答下面的問題:
己知函數(shù)(),
(1)計算:_______,_______;
(2)猜想:函數(shù)()是_______函數(shù)(填“增”或“減”);
(3)請仿照例題證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與x軸交于點B(6,0),與y軸交于點A,與二次函數(shù)y=ax2的圖象在第一象限內(nèi)交于點C(3,3).
(1)求此一次函數(shù)與二次函數(shù)的表達式;
(2)若點D在線段AC上,與y軸平行的直線DE與二次函數(shù)圖象相交于點E,∠ADO=∠OED,求點D坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,點P從點B出發(fā),沿BC以每秒2個單位長度的速度向終點C運動,同時點Q從點C出發(fā),沿折線以每秒5個單位長度的速度運動,到達點A時,點Q停止1秒,然后繼續(xù)運動.分別連結(jié)PQ、BQ.設(shè)的面積為S,點P的運動時間為秒.
(1)求點A與BC之間的距離.
(2)當時,求的值.
(3)求S與之間的函數(shù)關(guān)系式.
(4)當線段PQ與的某條邊垂直時,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市銷售一種高檔蔬菜“莼菜”,其進價為16元/kg.經(jīng)市場調(diào)查發(fā)現(xiàn):該商品的日銷售量y(kg)是售價x(元/kg)的一次函數(shù),其售價、日銷售量對應值如表:
售價(元/) | 20 | 30 | 40 |
日銷售量() | 80 | 60 | 40 |
(1)求關(guān)于的函數(shù)解析式(不要求寫出自變量的取值范圍);
(2)為多少時,當天的銷售利潤 (元)最大?最大利潤為多少?
(3)由于產(chǎn)量日漸減少,該商品進價提高了元/,物價部門規(guī)定該商品售價不得超過36元/,該商店在今后的銷售中,日銷售量與售價仍然滿足(1)中的函數(shù)關(guān)系.若日銷售最大利潤是864元,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=x2+bx+c的圖象經(jīng)過點A(﹣1,0),B(0,﹣3).
(1)求這個拋物線的解析式;
(2)拋物線與x軸的另一交點為C,拋物線的頂點為D,判斷△CBD的形狀;
(3)直線BN∥x軸,交拋物線于另一點N,點P是直線BN下方的拋物線上的一個動點(點P不與點B和點N重合),過點P作x軸的垂線,交直線BC于點Q,當四邊形BPNQ的面積最大時,求出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于點和點,與軸交于點,點坐標為,點坐標為,點是拋物線的頂點,過點作軸的垂線,垂足為,連接.
(1)求拋物線的解析式及點的坐標;
(2)點是拋物線上的動點,當時,求點的坐標;
(3)若點是軸上方拋物線上的動點,以為邊作正方形,隨著點的運動,正方形的大小、位置也隨著改變,當頂點或恰好落在軸上時,請直接寫出點的橫坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com