【題目】問題一:如圖1,已知A,C兩點之間的距離為16 cm,甲,乙兩點分別從相距3cmA,B兩點同時出發(fā)到C點,若甲的速度為8 cm/s,乙的速度為6 cm/s,設乙運動時間為x(s), 甲乙兩點之間距離為y(cm).

(1)當甲追上乙時,x =

(2)請用含x的代數(shù)式表示y

當甲追上乙前,y= ;

當甲追上乙后,甲到達C之前,y= ;

當甲到達C之后,乙到達C之前,y=

問題二:如圖2,若將上述線段AC彎曲后視作鐘表外圍的一部分,線段AB正好對應鐘表上的弧AB(1小時的間隔),易知AOB=30°

(1)分針OD指向圓周上的點的速度為每分鐘轉動 cm;時針OE指向圓周上的點的速度為每分鐘轉動 cm.

(2)若從4:00起計時,求幾分鐘后分針與時針第一次重合.

【答案】問題一、(1);(2)3-2x;2x-3;13-6x;問題一、(1);.

【解析】

問題一根據(jù)等量關系,路程=速度時間,路程差=路程1-路程2,即可列出方程求解。

問題一(1)當甲追上乙時,甲的路程=乙的路程+3

所以,

故答案為.

(2) 當甲追上乙前,路程差=乙所行的路程+3-甲所行的路程;

所以,.

當甲追上乙后,甲到達C之前,路程差=甲所行的路程-3-乙所行的路程;

所以,.

當甲到達C之后,乙到達C之前,路程差=總路程-3-乙所行的路程

所以,.

問題二:(1)由題意AB為鐘表外圍的一部分,且∠AOB=30°

可知,鐘表外圍的長度為

分針OD的速度為

時針OE的速度為

OD每分鐘轉動,OE每分鐘轉動.

(2)4點時時針與分針的路程差為

分鐘后分針與時針第一次重合。

由題意得,

解得,.

分鐘后分針與時針第一次重合。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】用直尺和圓規(guī)作一個角等于已知角,如圖,能得出的依據(jù)是( )

A.邊邊邊 B.邊角邊 C.角邊角 D.角角邊

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是等邊三角形,AB=4EAC的中點,D是直線BC上一動點,線段ED繞點E逆時針旋轉90°,得到線段EF,當點D運動時,則AF的最小值為(

A.2B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,BC=8cm,AC=10cm,動點A從點A出發(fā)以1cm/s的速度沿AB邊運動,同時動點Q從點B出發(fā)以2cm/s的速度沿BC邊運動.設運動時間為t秒.

(1)若△PBQ的面積等于8cm2,求t的值;

(2)若PQ的長等于cm,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,下列條件之一能使平行四邊形是菱形的為(

;②;③;④

A. ①③ B. ②③ C. ③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中, ,將繞頂點逆時針旋轉得到RtDEC,點M是BC的中點,點PDE的中點,連接PM,若BC =2,∠BAC=30°,則線段PM的最大值是 ( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,B=90°,AB=8cm,AD=16cm,BC=22cm,點P從點A出發(fā),以1cm/s的速度向點D運動,點Q從點C同時出發(fā),以3cm/s的速度向點B運動,其中一個動點到達端點時,另一個動點也隨之停止運動,設運動時間為t秒.

(1)當t為多少時,四邊形ABQP成為矩形?

(2)四邊形PBQD是否能成為菱形?若能,求出t的值;若不能,請說明理由,并探究如何改變Q點的速度(勻速運動),使四邊形PBQD在某一時刻為菱形,求點Q的速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解本校七年級學生課外閱讀的愛好,隨機抽取該校七年級部分學生進行問卷調查(每人只選一種書籍)如圖是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答下列問題:

1)這次活動一共調查了多少名學生?

2)求扇形統(tǒng)計圖中“其它”中的扇形圓心角的度數(shù).

3)補全條形統(tǒng)計圖.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以AD為直徑的半圓經過點E、B,點E、B是半圓的三等分點,弧 BE的長為,則圖中陰影部分的面積為(

A. B. C. D.

查看答案和解析>>

同步練習冊答案