【題目】如圖,D,E分別是三角形ABC的邊AB,BC上的點(diǎn),DEAC,點(diǎn)FDE的延長(zhǎng)線上,且∠DFC=∠A

1)求證:ABCF;

2)若∠ACF比∠BDE40°,求∠BDE的度數(shù).

【答案】1)證明見(jiàn)解析;(2)∠BDE=70°.

【解析】

1)根據(jù)平行線的性質(zhì)可得∠A+ADF=180°,由∠A=DFC可得∠ADF+DFC=180°,進(jìn)而可證明AB//CF;(2)由(1)可得∠A+ACF=180°,由DE//AC可得∠A=BDE,根據(jù)已知求出∠BDF即可.

1)∵DEAC

∴∠A+ADF=180°,

∵∠A=DFC

∴∠ADF+DFC=180°,

AB//CF.

2)∵AB//CF.

∴∠A+ACF=180°,

DEAC,

∴∠A=BDE,

∴∠BDE+ACF=180°

∵∠ACF-BDE=40°,

∴∠BDE+BDE+40°=180°,

∴∠BDE=70°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,∠EOF=60°,PAOF,PBOE,PCOF于點(diǎn)C,求∠BPC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明是個(gè)愛(ài)動(dòng)腦筋的學(xué)生,在學(xué)習(xí)了解直角三角形以后,一天他去測(cè)量學(xué)校的旗桿DF的高度,此時(shí)過(guò)旗桿的頂點(diǎn)F的陽(yáng)光剛好過(guò)身高DE為1.6米的小明的頭頂且在他身后形成的影長(zhǎng)DC=2米.

(1)若旗桿的高度FG是a米,用含a的代數(shù)式表示DG.
(2)小明從點(diǎn)C后退6米在A的測(cè)得旗桿頂點(diǎn)F的仰角為30°,求旗桿FG的高度.(點(diǎn)A、C、D、G在一條直線上, ,結(jié)果精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠B=38°,C=112°.(1)按下列要求作圖:(保留作圖痕跡)

BC邊上的高AD;

②∠A的平分線AE.

(2)求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知線段AB=12cm,點(diǎn)C是直線AB上任意一點(diǎn),MN分別是AC、BC的中點(diǎn),則線段MN=________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AD是△ABC的中線,tanB= ,cosC= ,AC=2 ,求sin∠ADC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,∠BAC=∠ABD=90°,AC=BD,點(diǎn)OAD,BC的交點(diǎn),點(diǎn)EAB的中點(diǎn).

1)圖中有哪幾對(duì)全等三角形?請(qǐng)寫(xiě)出來(lái);

2)試判斷OEAB的位置關(guān)系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的一元二次方程4x2+4(a﹣1)x+a2﹣a﹣2=0沒(méi)有實(shí)數(shù)根.
(1)求實(shí)數(shù)a的取值范圍;
(2)化簡(jiǎn):

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,我們把一個(gè)半圓與拋物線的一部分圍成的封閉圖形稱(chēng)為“果圓”.如果一條直線與果圓只有一個(gè)交點(diǎn),則這條直線叫做果圓的切線.已知A、B、C、D四點(diǎn)為果圓與坐標(biāo)軸的交點(diǎn),E為半圓的圓心,拋物線的解析式為y=x2﹣2x﹣3,AC為半圓的直徑.

(1)分別求出A、B、C、D四點(diǎn)的坐標(biāo);
(2)求經(jīng)過(guò)點(diǎn)D的果圓的切線DF的解析式;
(3)若經(jīng)過(guò)點(diǎn)B的果圓的切線與x軸交于點(diǎn)M,求△OBM的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案