【題目】如圖,一段圓弧與長(zhǎng)度為1的正方形網(wǎng)格的交點(diǎn)是A、B、C.

(1)請(qǐng)完成以下操作:

①以點(diǎn)O為原點(diǎn),垂直和水平方向?yàn)檩S,網(wǎng)格邊長(zhǎng)為單位長(zhǎng),建立平面直角坐標(biāo)系;

②根據(jù)圖形提供的信息,標(biāo)出該圓弧所在圓的圓心D,并連接AD、CD;

(2)請(qǐng)?jiān)?/span>(1)的基礎(chǔ)上,完成下列填空:⊙D的半徑為__________;點(diǎn)(6,–2)在⊙D__________;(填”、“內(nèi)”、“”)ADC的度數(shù)為__________.

【答案】(1)①見(jiàn)解析;②見(jiàn)解析;(2)2;;90°;

【解析】

(1)根據(jù)圖形和垂徑定理畫(huà)出圖形即可;

(2)根據(jù)勾股定理求出半徑即可;根據(jù)點(diǎn)到圓心的距離即可得到結(jié)論;

③證AOD≌△DFC,根據(jù)全等得出∠OAD=CDF,即可求出答案.

(1)①平面直角坐標(biāo)系如圖所示:

②圓心點(diǎn)D,如圖所示;

(2)⊙D的半徑=AD=,

∵點(diǎn)(6,﹣2)到圓心D的距離==半徑,

∴點(diǎn)(6,﹣2)在⊙D上.

觀察圖象可知:∠ADC=90°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1)是一個(gè)長(zhǎng)為2m,寬為2n的長(zhǎng)方形,沿圖中虛線剪成四個(gè)均勻的小長(zhǎng)方形,然后按圖(2)形狀拼成一個(gè)正方形.

(1)你認(rèn)為圖(2)中的陰影部分的正方形的邊長(zhǎng)等于多少?

(2)觀察圖(2),你能寫(xiě)出下列三個(gè)代數(shù)式之間的等量關(guān)系嗎?代數(shù)式:,,;

(3)已知:,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙O的直徑為10,點(diǎn)A、點(diǎn)B、點(diǎn)C在⊙O上,∠CAB的平分線交⊙O于點(diǎn)D

1)如圖①,若BC為⊙O的直徑,AB=6,求AC,BD的長(zhǎng);

2)如圖②,若∠CAB=60°,CFBD,①求證:CF是⊙O的切線;②求由弦CDCB以及弧DB圍成圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,AB是⊙O的直徑,∠B=30°,弦BC=6,ACB的平分線交⊙OD,連AD.

(1)求直徑AB的長(zhǎng).

(2)求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊中,點(diǎn),分別在邊上,且,過(guò)點(diǎn),交的延長(zhǎng)線于點(diǎn)

1)求的度數(shù):

2)若,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,一副含角的三角板如圖擺放,邊重合,.當(dāng)點(diǎn)從點(diǎn)出發(fā)沿方向滑動(dòng)時(shí),點(diǎn)同時(shí)從點(diǎn)出發(fā)沿軸正方向滑動(dòng).

設(shè)點(diǎn)關(guān)于的函數(shù)表達(dá)式為________.

連接.當(dāng)點(diǎn)從點(diǎn)滑動(dòng)到點(diǎn)時(shí),的面積最大值為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的三邊 的長(zhǎng)分別為,其三條角平分線交于點(diǎn),則=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,的直角項(xiàng)點(diǎn)軸的正半軸上,頂點(diǎn)的縱坐標(biāo)為,,.點(diǎn)是斜邊上的一個(gè)動(dòng)點(diǎn),則的周長(zhǎng)的最小值為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

1;

2;

3)解分式方程:;

4)已知:;

①當(dāng)時(shí),先化簡(jiǎn),再求值;

②代數(shù)式的值能不能等于,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案