【題目】在平面直角坐標(biāo)中,A (05)、B (40)C (2,5),四邊形AOBC經(jīng)過平移后得到四邊形AOBC′.

(1) 如圖1,若A′(3,5),四邊形AOBC內(nèi)部一點(diǎn)M(ab2,6a7)經(jīng)過平移后得到點(diǎn)N(a2b7,4b6),求M點(diǎn)的坐標(biāo)

(2) 如圖2,若四邊形AOBC向右平移m個(gè)單位長度(m0).當(dāng)m為何值時(shí),重疊部分的面積比四邊形BBCC的面積大

(3) 如圖3,若四邊形AOBC向上平移2個(gè)單位長度,直接寫出圖中陰影部分的面積.

【答案】1;(2)當(dāng)時(shí),重疊部分的面積比四邊形BBCC的面積大;(3)

【解析】

1)根據(jù)對(duì)應(yīng)點(diǎn)的橫坐標(biāo)和縱坐標(biāo)的變化確定平移方向和平移距離;

2)用m表示線段長,根據(jù)梯形面積公式表示出重疊部分和四邊形BB′C′C的面積,根據(jù)二者的關(guān)系列出不等式求解;

3)根據(jù)平移性質(zhì)和勾股定理求出OD的長度,由圖形特征得出陰影部分的面積等于梯形OBDO的面積,根據(jù)梯形面積公式計(jì)算.

1)∵A (0,5),A′(35),

∴四邊形AOBC向左平移3個(gè)單位得到四邊形A′O′B′C′,

M(ab2,6a7)對(duì)應(yīng)點(diǎn)為N(a2b7,4b6),

,

,

M點(diǎn)的坐標(biāo)為: .

2)∵A (0,5)、B (4,0)、C (2,5)

AO=5,AC=2OB=4,

根據(jù)題意得, ,

解得, ,

.

∴當(dāng)時(shí),重疊部分的面積比四邊形BB′C′C的面積大.

3)如圖,由圖形可得,陰影部分的面積等于梯形OBDO的面積,

CCMx軸于M點(diǎn),作DNx軸于N點(diǎn),

∴∠OND=NDO=OON=90°,

∴四邊形ONDO是矩形,∴ON=OD,OO=ND=2

∵∠AOM=OMC=OAC=90°,

∴四邊形OMCA是矩形,

CM=OA=5,AC=OM=2

BM=OB-OM=4-2=2,

RtCMB中,由勾股定理得BC= ,

ACODOB,

,

,

BD= ,

RtDNB中,由勾股定理得,BN= ,

ON=OB-BN=4-=,

ON=OD=

S梯形OBDO= .

即陰影部分的面積為 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地計(jì)劃用120180天(含120180天)的時(shí)間建設(shè)一項(xiàng)水利工程,工程需要運(yùn)送的土石方總量為360萬米3

1)寫出運(yùn)輸公司完成任務(wù)所需的時(shí)間y(單位:天)與平均每天的工作量x(單位:萬米3)之間的函數(shù)關(guān)系式.并給出自變量x的取值范圍;

2)由于工程進(jìn)度的需要,實(shí)際平均每天運(yùn)送土石方比原計(jì)劃多20%,工期比原計(jì)劃減少了24天,原計(jì)劃和實(shí)際平均每天運(yùn)送土石方各是多少萬米3?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,階梯圖的每個(gè)臺(tái)階上都標(biāo)著一個(gè)數(shù),從下到上的第1個(gè)至第4個(gè)臺(tái)階上依次標(biāo)著﹣5,﹣2,1,9,且任意相鄰四個(gè)臺(tái)階上數(shù)的和都相等.

嘗試 (1)求前4個(gè)臺(tái)階上數(shù)的和是多少?

(2)求第5個(gè)臺(tái)階上的數(shù)x是多少?

應(yīng)用 求從下到上前31個(gè)臺(tái)階上數(shù)的和.

發(fā)現(xiàn) 試用含k(k為正整數(shù))的式子表示出數(shù)“1”所在的臺(tái)階數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) y =kx2 +(k +1)x +1(k 為實(shí)數(shù)),

(1)當(dāng) k=3 時(shí),求此函數(shù)圖象與 x 軸的交點(diǎn)坐標(biāo);

(2)判斷此函數(shù)與 x 軸的交點(diǎn)個(gè)數(shù),并說明理由;

(3)當(dāng)此函數(shù)圖象為拋物線,且頂點(diǎn)在 x 軸下方,頂點(diǎn)到 y 軸的距離為 2,求 k 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年,在端午節(jié)前夕,三位同學(xué)到某超市調(diào)研一種進(jìn)價(jià)為2元的粽子的銷售情況.(售價(jià)不低于進(jìn)價(jià)).請(qǐng)根據(jù)小麗提供的信息,解答小華和小明提出的問題.

認(rèn)真閱讀上面三位同學(xué)的對(duì)話,請(qǐng)根據(jù)小麗提供的信息.

(1)解答小華的問題;

(2)解答小明的問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知y=(m2+m)+(m﹣3)x+m2x的二次函數(shù),求出它的解析式.

(2)用配方法求二次函數(shù)y=﹣x2+5x﹣7的頂點(diǎn)坐標(biāo)并求出函數(shù)的最大值或最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校隨機(jī)選取40名學(xué)生進(jìn)行軍運(yùn)會(huì)知識(shí)考查,對(duì)考查成績進(jìn)行統(tǒng)計(jì)(成績均為整數(shù)),并依據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如下統(tǒng)計(jì)圖表.解答下列問題:

組別

分?jǐn)?shù)段/

頻數(shù)

頻率

1

50.5~60.5

2

a

2

60.5~70.5

6

0.15

3

70.5~80.5

b

c

4

80.5~90.5

12

0.30

5

90.5~100.5

6

0.15

合計(jì)

40

1.00

(1) 表中a______;b______c____;

(2) 請(qǐng)補(bǔ)全頻數(shù)分布直方圖;

(3) 已知該學(xué)校共有學(xué)生1280人,若考查成績80分以上(不含80分)為優(yōu)秀,試估計(jì)該學(xué)校學(xué)生軍運(yùn)會(huì)知識(shí)考查成績達(dá)到優(yōu)秀的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下列證明:如圖,已知AD⊥BC,EF⊥BC,∠1=∠2.

求證: DG∥BA.

證明:∵AD⊥BC,EF⊥BC ( 已知 )

∴∠EFB=90°,∠ADB=90°(_______________________ )

∴∠EFB=∠ADB ( 等量代換 )

∴EF∥AD ( _________________________________ )

∴∠1=∠BAD (________________________________________)

∵∠1=∠2 ( 已知)

(等量代換)

∴DG∥BA. (__________________________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分)已知A4,m+10)、Bn,4)兩點(diǎn)是一次函數(shù)y=kx+b和反比例函數(shù)y=圖象的兩個(gè)交點(diǎn).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△AOB的面積;

3)觀察圖象,直接寫出不等式kx+b0的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案