如圖,在水平桌面上的兩個“E”,當點P1,P2,O在一條直線上時,在點O處用①號“E”(大“E”)測得的視力與用②號“E”(小“E”)測得的視力效果相同.
(1)△P1D1O與△P2D2O相似嗎?
(2)圖中b1,b2,l1,l2滿足怎樣的關(guān)系式?
(3)若b1=3.2cm,b2=2cm,①號“E”的測量距離l1=8m,要使得測得的視力相同,則②號“E”的測量距離l2應(yīng)為多少?

【答案】分析:(1)根據(jù)相似三角形的判定定理進行判定;
(2)根據(jù)相似三角形的對應(yīng)邊成比例解答;
(3)根據(jù)相似三角形的對應(yīng)邊成比例代入數(shù)據(jù)進行計算.
解答:解:(1)相似.
∵兩個“E”均與桌面垂直,
∴它們與水平桌面構(gòu)成的兩個直角三角形相似.

(2)由(1)得△P1D1O∽△P2D2O,
=,即=

(3)∵=且b1=3.2cm,b2=2cm,l1=8m=800cm,
=,
∴l(xiāng)2=500cm=5m.
答:②號“E”的測量距離l2=5m.
點評:解答此題的關(guān)鍵是熟知相似三角形的判定定理及性質(zhì).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)為了測量一個圓形鐵環(huán)的半徑,某同學采用了如下辦法:將鐵環(huán)平放在水平桌面上,用一個銳角為30°的三角板和一個刻度尺,按如圖所示的方法得到相關(guān)數(shù)據(jù),進而可求得鐵環(huán)的半徑,若三角板與圓相切且測得PA=5cm,求鐵環(huán)的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)要測量一個圓形鐵環(huán)的半徑,某同學采用如下方法,將鐵環(huán)平放在水平桌面上,用一個銳角為30°的三角板和一個刻度尺,按照如圖的方法測量得PA=5,請問鐵環(huán)的半徑是多少?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

為了測量一個圓形鐵環(huán)的半徑,某同學采用了如下辦法:將鐵環(huán)平放在水平桌面上,用一個銳角為30°的三角板和一個刻度尺,按如圖所示的方法得到相關(guān)數(shù)據(jù),進而可求得鐵環(huán)的半徑,若測得PA=5cm,則鐵環(huán)的半徑是( 。ヽm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•河北)如圖,A是正方體小木塊(質(zhì)地均勻)的一頂點,將木塊隨機投擲在水平桌面上,則A與桌面接觸的概率是
1
2
1
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•河北)一透明的敞口正方體容器ABCD-A′B′C′D′裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α(∠CBE=α,如圖1所示).探究 如圖1,液面剛好過棱CD,并與棱BB′交于點Q,此時液體的形狀為直三棱柱,其三視圖及尺寸如圖2所示.
解決問題:
(1)CQ與BE的位置關(guān)系是
CQ∥BE
CQ∥BE
,BQ的長是
3
3
dm;
(2)求液體的體積;(參考算法:直棱柱體積V=底面積S△BCQ×高AB)
(3)求α的度數(shù).(注:sin49°=cos41°=
3
4
,tan37°=
3
4


拓展:在圖1的基礎(chǔ)上,以棱AB為軸將容器向左或向右旋轉(zhuǎn),但不能使液體溢出,圖3或圖4是其正面示意圖.若液面與棱C′C或CB交于點P,設(shè)PC=x,BQ=y.分別就圖3和圖4求y與x的函數(shù)關(guān)系式,并寫出相應(yīng)的α的范圍.
延伸:在圖4的基礎(chǔ)上,于容器底部正中間位置,嵌入一平行于側(cè)面的長方形隔板(厚度忽略不計),得到圖5,隔板高NM=1dm,BM=CM,NM⊥BC.繼續(xù)向右緩慢旋轉(zhuǎn),當α=60°時,通過計算,判斷溢出容器的液體能否達到4dm3

查看答案和解析>>

同步練習冊答案