【題目】如圖在Rt△ABC中,∠C=90°,點D是AC的中點,且∠A+∠CDB=90°,過點A、D作⊙O,使圓心O在AB上,⊙O與AB交于點E.
(1)求證:直線BD與⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直徑.
【答案】解:(1)證明:連接OD,
∵OA=OD,
∴∠A=∠ADO,
又∵∠A+∠CDB=90°,
∴∠ADO+∠CDB=90°,
∴∠ODB=180°﹣(∠ADO+∠CDB)=90°,
∴BD⊥OD,
∴BD是⊙O切線;
(2)連接DE,
∵AE是直徑,
∴∠ADE=90°,
又∵∠C=90°,
∴∠ADE=∠C,
∴DE∥BC,
又∵D是AC中點,
∴AD=CD,
∴AD:CD=AE:BE,
∴AE=BE,
∵DE∥BC,
∴△ADE∽△ACB,
∴AD:AE=AC:AB,
∴AC:AB=4:5,
設AC=4x,AB=5x,那么BC=3x,
∴BC:AB=3:5,
∵BC=6,
∴AB=10,
∴AE=AB=10.
【解析】試題分析:(1)、連接OD,根據(jù)△AOD為等腰三角形可得∠A=∠ODA,根據(jù)∠A+∠CDB=90°可得∠ODA+∠CDB=90°,從而得出∠BDO=90°;(2)、連接OE,根據(jù)直徑所對的圓周角為直角得出∠ADE=90°,根據(jù)D為中點可得E為AB的中點,根據(jù)△ADE和△ACB相似可得AC:AB=4:5,然后求出BC的長度,從而得出直徑的長度.
試題解析:(1)、連接OD,在△AOD中,OA=OD, ∴∠A=∠ODA,
又∵∠A+∠CDB=90° ∴∠ODA+∠CDB=90°, ∴∠BDO=180°-90°=90°,即OD⊥BD,
∴BD與⊙O相切.
(2)、連接DE,∵AE是⊙O的直徑, ∴∠ADE=90°, ∴DE∥BC.
又∵D是AC的中點,∴AE=BE. ∴△AED∽△ABC.
∴AC∶AB=AD∶AE. ∵AD:AE=4:5 ∴AC∶AB=4∶5,
令AC=4x,AB=5x,則BC=3x. ∵BC=6,∴AB=10,
∴AE=5,∴⊙O的直徑為5.
科目:初中數(shù)學 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了如圖兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學生共有 人,扇形統(tǒng)計圖中“了解”部分所對應扇形的圓心角為 °;
(2)若該中學共有學生900人,請根據(jù)上述調(diào)查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù)為 人;
(3)若從對校園安全知識達到“了解”程度的3個女生A、B、C和2個男生M、N中分別隨機抽取1人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到女生A的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面的統(tǒng)計圖反映了我國最近十年間核電發(fā)電量的增長情況,根據(jù)統(tǒng)計圖提供的信息,下列判斷合理的是( 。
A. 2011年我國的核電發(fā)電量占總發(fā)電量的比值約為1.5%
B. 2006年我國的總發(fā)電量約為25000億千瓦時
C. 2013年我國的核電發(fā)電量占總發(fā)電量的比值是2006年的2倍
D. 我國的核電發(fā)電量從2008年開始突破1000億千瓦時
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中A點的坐標為(8,) ,AB⊥軸于點B, sin∠OAB =,反比例函數(shù)的圖象的一支經(jīng)過AO的中點C,且與AB交于點D.
(1)求反比例函數(shù)解析式;
(2)求四邊形OCDB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商品的進價為每件30元,售價為每件40元,每周可賣出180件;如果每件商品的售價每上漲1元,則每周就會少賣出5件,但每件售價不能高于50元,設每件商品的售價上漲x元(x為整數(shù)),每周的銷售利潤為y元.
(1)求y與x的函數(shù)關系式,并直接寫出自變量x的取值范圍;
(2)每件商品的售價為多少元時,每周可獲得最大利潤?最大利潤是多少?
(3)每件商品的售價定為多少元時,每周的利潤恰好是2145元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,矩形ABCD的頂點A,D分別在的邊PM,PN上,頂點B、C在的邊MN上且.
請在圖1中在線段AB的左側(cè)畫一個矩形EGBF∽矩形ABCD,使得點E,點G,點F分別在線段AM、AB、MB上保留必要的痕跡,并作簡單的說明
若矩形ABCD的邊,,請計算中矩形EGBF的邊長EF的長度.
若矩形ABCD的邊,,則中矩形EGBF的邊長EF的長度為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校在開展 “校園獻愛心”活動中,準備向南部山區(qū)學校捐贈男、女兩種款式的書包.已知男款書包的單價50元/個,女款書包的單價70元/個.
(1)原計劃募捐3400元,購買兩種款式的書包共60個,那么這兩種款式的書包各買多少個?
(2)在捐款活動中,由于學生捐款的積極性高漲,實際共捐款4800元,如果至少購買兩種款式的書包共80個,那么女款書包最多能買多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD是AB邊上的中線,E是CD的中點,過點C作AB的平行線交AE的延長線于點F,連接BF.
(1)求證:四邊形BDCF是菱形;
(2)當Rt△ABC中的邊或角滿足什么條件時?四邊形BDCF是正方形,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某區(qū)為了解全區(qū)2800名九年級學生英語口語考試成績的情況,從中隨機抽取了部分學生的成績(滿分24分,得分均為整數(shù)),制成下表:
分數(shù)段(x分) | x≤16 | 17≤x≤18 | 19≤x≤20 | 21≤x≤22 | 23≤x≤24 |
人 數(shù) | 10 | 15 | 35 | 112 | 128 |
(1)填空:
①本次抽樣調(diào)查共抽取了 名學生;
②學生成績的中位數(shù)落在 分數(shù)段;
③若用扇形統(tǒng)計圖表示統(tǒng)計結果,則分數(shù)段為x≤16的人數(shù)所對應扇形的圓心角為 °;
(2)如果將21分以上(含21分)定為優(yōu)秀,請估計該區(qū)九年級考生成績?yōu)閮?yōu)秀的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com