【題目】隨著互聯(lián)網(wǎng)的發(fā)展,同學(xué)們的學(xué)習(xí)習(xí)慣也有了改變,一些同學(xué)在做題遇到困難時(shí),喜歡上網(wǎng)查找答案.針對(duì)這個(gè)問(wèn)題,某校調(diào)查了部分學(xué)生對(duì)這種做法的意見(jiàn)(分為:贊成、無(wú)所謂、反對(duì)),并將調(diào)查結(jié)果繪制成圖1和圖2兩個(gè)不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)此次抽樣調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)將圖1補(bǔ)充完整;
(3)求出扇形統(tǒng)計(jì)圖中持“反對(duì)”意見(jiàn)的學(xué)生所在扇形的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)該校1500名學(xué)生中有多少名學(xué)生持“無(wú)所謂”意見(jiàn).
【答案】200名;見(jiàn)解析;;(4)375.
【解析】
根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以求得此次抽樣調(diào)查中,共調(diào)查了多少名學(xué)生;
根據(jù)中的結(jié)果和統(tǒng)計(jì)圖中的數(shù)據(jù)可以求得反對(duì)的人數(shù),從而可以將條形統(tǒng)計(jì)圖補(bǔ)充完整;
根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以求得扇形統(tǒng)計(jì)圖中持“反對(duì)”意見(jiàn)的學(xué)生所在扇形的圓心角的度數(shù);
根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以估計(jì)該校1500名學(xué)生中有多少名學(xué)生持“無(wú)所謂”意見(jiàn).
解:,
答:此次抽樣調(diào)查中,共調(diào)查了200名學(xué)生;
反對(duì)的人數(shù)為:,
補(bǔ)全的條形統(tǒng)計(jì)圖如右圖所示;
扇形統(tǒng)計(jì)圖中持“反對(duì)”意見(jiàn)的學(xué)生所在扇形的圓心角的度數(shù)是:;
(4),
答:該校1500名學(xué)生中有375名學(xué)生持“無(wú)所謂”意見(jiàn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖O為直線AB上一點(diǎn),∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)求∠BOD的度數(shù);
(2)試判斷OE是否平分∠BOC,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,的所對(duì)邊分別是,且,若滿足,則稱為奇異三角形,例如等邊三角形就是奇異三角形.
(1)若,判斷是否為奇異三角形,并說(shuō)明理由;
(2)若,,求的長(zhǎng);
(3)如圖2,在奇異三角形中,,點(diǎn)是邊上的中點(diǎn),連結(jié),將分割成2個(gè)三角形,其中是奇異三角形,是以為底的等腰三角形,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,的邊上有一動(dòng)點(diǎn),從距離點(diǎn)的點(diǎn)處出發(fā),沿線段,射線運(yùn)動(dòng),速度為;動(dòng)點(diǎn)從點(diǎn)出發(fā),沿射線運(yùn)動(dòng),速度為.,同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間是.
(1)當(dāng)點(diǎn)在上運(yùn)動(dòng)時(shí), (用含的代數(shù)式表示);
(2)當(dāng)點(diǎn)在上運(yùn)動(dòng)時(shí),為何值,能使?
(3)若點(diǎn)運(yùn)動(dòng)到距離點(diǎn)的點(diǎn)處停止,在點(diǎn)停止運(yùn)動(dòng)前,點(diǎn)能否追上點(diǎn)?如果能,求出的值;如果不能,請(qǐng)說(shuō)出理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在初中學(xué)習(xí)中,我們知道:點(diǎn)到直線的距離是直線外一點(diǎn)和直線上各點(diǎn)連接的所有線段中,最短的線段(即垂線段)的長(zhǎng)度.類比,我們給出點(diǎn)到某一個(gè)圖形的距離的定義:點(diǎn)P與圖形l上各點(diǎn)連接的所有線段中,若線段PA1最短,則線段PA1的長(zhǎng)度稱為點(diǎn)P到圖形l的距離,記為d(P,圖形l).特別地,點(diǎn)P在圖形上,則點(diǎn)P到圖形的距離為0,即d(P,圖形)=0.
(1)若點(diǎn)P是⊙O內(nèi)一點(diǎn),⊙O的半徑是5,OP=2,則d(P,⊙O)= .
(2)如圖1,在平面直角坐標(biāo)系xOy中,A(4,0).若M(0,2),N(﹣1,0),則d(M,∠AOB)= ,d(N,∠AOB)= .
(3)在正方形OABC中,點(diǎn)B(4,4),如圖2,若點(diǎn)P在直線y=3x+4上,且d(P,∠AOB)=2,求點(diǎn)P的坐標(biāo);
(4)已知點(diǎn)P(m+1,2m﹣3),以點(diǎn)E(1,0)為圓心,EO長(zhǎng)為半徑作⊙E,則d(P,⊙E)的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上點(diǎn)A表示的數(shù)a、點(diǎn)B表示數(shù)b,a、b滿足|a﹣30|+(b+6)2=0.點(diǎn)O是數(shù)軸原點(diǎn).
(1)點(diǎn)A表示的數(shù)為 ,點(diǎn)B表示的數(shù)為 ,線段AB的長(zhǎng)為 .
(2)若點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC,請(qǐng)?jiān)跀?shù)軸上找一點(diǎn)C,使AC=2BC,則點(diǎn)C在數(shù)軸上表示的數(shù)為 .
(3)現(xiàn)有動(dòng)點(diǎn)P、Q都從B點(diǎn)出發(fā),點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)A移動(dòng);當(dāng)點(diǎn)P移動(dòng)到O點(diǎn)時(shí),點(diǎn)Q才從B點(diǎn)出發(fā),并以每秒3個(gè)單位長(zhǎng)度的速度向右移動(dòng),且當(dāng)點(diǎn)P到達(dá)A點(diǎn)時(shí),點(diǎn)Q就停止移動(dòng),設(shè)點(diǎn)P移動(dòng)的時(shí)間為t秒,問(wèn):當(dāng)t為多少時(shí),P、Q兩點(diǎn)相距4個(gè)單位長(zhǎng)度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店欲購(gòu)進(jìn)A、B兩種商品,若購(gòu)進(jìn)A種商品5件,B種商品3件,共需450元;若購(gòu)進(jìn)A種商品10件,B種商品8件,共需1000元.
(1)購(gòu)進(jìn)A、B兩種商品每件各需多少元?
(2)該商店購(gòu)進(jìn)足夠多的A、B兩種商品,在銷售中發(fā)現(xiàn),A種商品售價(jià)為每件80元,每天可銷售100件,現(xiàn)在決定對(duì)A種商品在每件80元的基礎(chǔ)上降價(jià)銷售,每件每降價(jià)1元,多售出20件,該商店對(duì)A種商品降價(jià)銷售后每天銷量超過(guò)200件;B種商品銷售狀況良好,每天可獲利7000元,為使銷售A、B兩種商品每天總獲利為10000元,A種商品每件降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某牛奶加工廠現(xiàn)有鮮奶9噸,若在市場(chǎng)上直接銷售鮮奶,每噸可獲取利潤(rùn)500元;制成酸奶銷售,每噸可獲取利潤(rùn)1200元;制成奶片銷售,每噸可獲取利潤(rùn) 2000元。
該加工廠的生產(chǎn)能力是:如制成酸奶,每天可加工3噸;制成奶片,每天可加工1噸。受人員限制,兩種加工方式不可同時(shí)進(jìn)行。受氣溫條件限制,這批牛奶必須在4天內(nèi)全部銷售或加工完畢。為此,該廠設(shè)計(jì)了兩種可行方案:
方案一:盡可能多地制成奶片,其余直接銷售鮮奶;
方案二:將一部分制成奶片,其余制成酸奶銷售,并恰好4天完成。
你認(rèn)為哪種方案獲利最多?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,四邊形ABCD四條邊上的中點(diǎn)分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點(diǎn)四邊形).
(1)四邊形EFGH是什么四邊形?證明你的結(jié)論.
(2)當(dāng)四邊形ABCD的對(duì)角線滿足 條件時(shí),四邊形EFGH是矩形;
(3)你學(xué)過(guò)的哪種特殊四邊形的中點(diǎn)四邊形是矩形? . (填一種即可)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com