【題目】小明家的腳踏式垃圾桶如圖,當(dāng)腳踩踏板時(shí)垃圾桶蓋打開最大張角∠ABC =45°,為節(jié)省家里空間小明 想把垃圾桶放到桌下,經(jīng)測量桌子下沿離地面高 55cm,垃圾桶高 BD=33.1cm,桶蓋直徑 BC=28.2cm,問垃圾桶放到桌下踩踏板時(shí),桶蓋完全打開有沒有碰到桌子下沿?( 1.41 )
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象與x軸交點(diǎn)為A(-3,0),與y軸交點(diǎn)為B,且與正比例函數(shù)的圖象的交于點(diǎn)C(m,4).
(1)求m的值及一次函數(shù)y=kx+b的表達(dá)式;
(2)若點(diǎn)P是y軸上一點(diǎn),且△BPC的面積為6,請直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等邊三角形,E是AB的中點(diǎn),連接CE并延長交AD于F.
(1)求證:△AEF≌△BEC;
(2)判斷四邊形BCFD是何特殊四邊形,并說出理由;
(3)如圖2,將四邊形ACBD折疊,使D與C重合,HK為折痕,若BC=1,求AH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校園文學(xué)社為了解本校學(xué)生對本社一種報(bào)紙四個版面的喜歡情況,隨機(jī)抽取部分學(xué)生做了一次問卷調(diào)查,要求學(xué)生選出自己喜歡的一個版面,將調(diào)查數(shù)據(jù)進(jìn)行了整理、繪制成部分統(tǒng)計(jì)圖如下:
請根據(jù)圖中信息,解答下列問題:
(1)第一版=____%,“第四版”對應(yīng)扇形的圓心角為________°;
(2)請你補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校有1200名學(xué)生,請你估計(jì)全校學(xué)生中最喜歡“第三版”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD與四邊形CEFG是兩個邊長分別為a,b的正方形.
(1)用含a,b的代數(shù)式表示三角形BGF的面積;(2)當(dāng),時(shí),求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中兩條直線為l1:y=–3x+3,l2:y=–3x+9,直線l1交x軸于點(diǎn)A,交y軸于點(diǎn)B,直線l2交x軸于點(diǎn)D,過點(diǎn)B作x軸的平行線交l2于點(diǎn)C,點(diǎn)A、E關(guān)于y軸對稱,拋物線y=ax2+bx+c過E、B、C三點(diǎn),下列判斷中:
①a–b+c=0;
②2a+b+c=5;
③拋物線關(guān)于直線x=1對稱;
④拋物線過點(diǎn)(b,c);
⑤S四邊形ABCD=5;
其中正確的個數(shù)有( )
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某人用如下方法測一鋼管的內(nèi)徑:將一小段鋼管豎直放在平臺上.向內(nèi)放入兩個半徑為5 cm的鋼球,測得上面一個鋼球的最高點(diǎn)到底面的距離DC=16 cm(鋼管的軸截面如圖所示),則鋼管的內(nèi)徑AD的長為_______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(-1,0),B(1,0),C為y軸正半軸上一點(diǎn),點(diǎn)D為第三象限一動點(diǎn),CD交AB于F,且∠ADB=2∠BAC,
(1)求證:∠ADB與∠ACB互補(bǔ);
(2)求證:CD平分∠ADB;
(3)若在D點(diǎn)運(yùn)動的過程中,始終有DC=DA+DB,在此過程中,∠BAC的度數(shù)是否變化?如果變化,請說明理由;如果不變,請求出∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠ACB=90°,AC=8,cosA=,D是AB邊的中點(diǎn),E是AC邊上一點(diǎn),聯(lián)結(jié)DE,過點(diǎn)D作DF⊥DE交BC邊于點(diǎn)F,聯(lián)結(jié)EF.
(1)如圖1,當(dāng)DE⊥AC時(shí),求EF的長;
(2)如圖2,當(dāng)點(diǎn)E在AC邊上移動時(shí),∠DFE的正切值是否會發(fā)生變化,如果變化請說出變化情況;如果保持不變,請求出∠DFE的正切值;
(3)如圖3,聯(lián)結(jié)CD交EF于點(diǎn)Q,當(dāng)△CQF是等腰三角形時(shí),請直接寫出BF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com