【題目】某隧道洞的內部截面頂部是拋物線形,現(xiàn)測得地面寬 AB=10m,隧道頂點O到地面AB的距離為5m,
(1)建立適當的平面直角坐標系,幵求該拋物線的解析式;
(2)一輛小轎車長 4.5米,寬2米,高1.5米,同樣大小的小轎車通過該隧道,最多能有 幾輛車幵行?
科目:初中數學 來源: 題型:
【題目】如圖,已知等腰三角形ABC中,AB=AC,點D、E分別在邊AB、AC上,且AD=AE,連接BE、CD,交于點F.
(1)判斷∠ABE與∠ACD的數量關系,并說明理由;
(2)求證:過點A、F的直線垂直平分線段BC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖△ABC三個頂點的坐標分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網格中,每個小正方形的邊長是1個單位長度.
(1)畫出△ABC向上平移6個單位得到的△A1B1C1;
(2)以點C為位似中心,在網格中畫出△A2B2C2,使△A2B2C2與△ABC位似,且△A2B2C2與△ABC的位似比為2:1,并直接寫出點A2的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料:
小明在學習二次根式的化簡后,遇到了這樣一個需要化簡的式子:.該如何化簡呢?思考后,他發(fā)現(xiàn)3+2=1+2+()2=(1+)2.于是==1+.善于思考的小明繼續(xù)深入探索;當a+b=(m+n)2時(其中a,b,m,n均為正整數),則a+b=m2+2mn+2n2.此時,a=m2+2n2,b=2mn,于是,=m+n.請你仿照小明的方法探索并解決下列問題:
(1)設a,b,m,n均為正整數且=m+n,用含m,n的式子分別表示a,b時,結果是a= ,b= ;
(2)利用(1)中的結論,選擇一組正整數填空:= + ;
(3)化簡:.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知 A、B是線段MN上的兩點,MN4,MA1,MB1.以A為中心順 時針旋轉點M,以B為中心逆時針旋轉點N,使MN 兩點重合成一點C,構成△ABC,設ABx.(1)則x的取值范圍是_________;(2)△ABC的最大面積是_________.
C
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在網格圖中,與是位似圖形.
若在網格上建立平面直角坐標系,使得點A的坐標為,點的坐標為,寫出點B的坐標;
以點A為位似中心,在網格圖中作,使和位似,且位似比為1:2;
在圖上標出與的位似中心P,并寫出點P的坐標,計算四邊形ABCP的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】九(1)班數學興趣小組經過市場調查,整理出某種商品在第x(1≤x≤90)天的售價與銷售量的相關信息如下表:
時間x(天) | 1≤x<50 | 50≤x≤90 |
售價(元/件) | x+40 | 90 |
每天銷量(件) | 200-2x |
已知該商品的進價為每件30元,設銷售該商品的每天利潤為y元[
(1)求出y與x的函數關系式;
(2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結果.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在現(xiàn)今“互聯(lián)網+”的時代,密碼與我們的生活已經緊密相連,密不可分.而諸如“123456”、生日等簡單密碼又容易被破解,因此利用簡單方法產生一組容易記憶的6位數密碼就很有必要了.有一種用“因式分解法產生的密碼,方便記憶,其原理是:將一個多項式分解因式,如多項式:x3+2x2﹣x﹣2因式分解的結果為(x﹣1)(x+1)(x+2),當x=18時,x﹣1=17,x+1=19,x+2=20,此時可以得到數字密碼171920.
(1)根據上述方法,當x=21,y=7時,對于多項式x3﹣xy2分解因式后可以形成哪些數字密碼?(寫出兩個)
(2)若多項式x3+(m﹣3n)x2﹣nx﹣21因式分解后,利用本題的方法,當x=27時可以得到其中一個密碼為242834,求m、n的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com