【題目】在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(﹣6,0).如圖1,正方形OBCD的頂點(diǎn)B在x軸的負(fù)半軸上,點(diǎn)C在第二象限.現(xiàn)將正方形OBCD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)角α得到正方形OEFG.
(1)如圖2,若α=60°,OE=OA,求直線EF的函數(shù)表達(dá)式;
(2)若α為銳角,tanα=,當(dāng)AE取得最小值時(shí),求正方形OEFG的面積;
(3)當(dāng)正方形OEFG的頂點(diǎn)F落在y軸上時(shí),直線AE與直線FG相交于點(diǎn)P,△OEP的其中兩邊之比能否為:1?若能,求點(diǎn)P的坐標(biāo);若不能,試說明理由.
【答案】(1);(2);(3)存在,P1(0,6),P2(﹣6,18),P3(﹣18,36),P4(﹣6,0),P5(﹣18,6).
【解析】
試題分析:(1)如圖1,過點(diǎn)E作EH⊥OA于點(diǎn)H,EF與y軸的交點(diǎn)為M.
∵OE=OA,α=60°,∴△AEO為正三角形,∴OH=3,EH==,∴E(﹣3,).
∵∠AOM=90°,∴∠EOM=30°.
在Rt△EOM中,∵cos∠EOM=,即,∴OM=,∴M(0,).
設(shè)直線EF的函數(shù)表達(dá)式為,∵該直線過點(diǎn)E(﹣3,),∴=,解得,所以,直線EF的函數(shù)表達(dá)式為.
(2)如圖2,射線OQ與OA的夾角為α( α為銳角,tanα=).
無論正方形邊長(zhǎng)為多少,繞點(diǎn)O旋轉(zhuǎn)角α后得到正方
形OEFG的頂點(diǎn)E在射線OQ上,∴當(dāng)AE⊥OQ時(shí),線段AE的長(zhǎng)最。
在Rt△AOE中,設(shè)AE=a,則OE=2a,∴,解得,(舍去),∴OE=2a=,∴S正方形OEFG==.
(3)設(shè)正方形邊長(zhǎng)為m.
當(dāng)點(diǎn)F落在y軸正半軸時(shí).如圖3,當(dāng)P與F重合時(shí),△PEO是等腰直角三角形,有或.
在Rt△AOP中,∠APO=45°,OP=OA=6,∴點(diǎn)P1的坐標(biāo)為(0,6).
在圖3的基礎(chǔ)上,當(dāng)減小正方形邊長(zhǎng)時(shí),點(diǎn)P在邊FG 上,△OEP的其中兩邊之比不可能為:1;
當(dāng)增加正方形邊長(zhǎng)時(shí),存在(圖4)和(圖5)兩種情況.
如圖4,△EFP是等腰直角三角形,有=,即=,此時(shí)有AP∥OF.
在Rt△AOE中,∠AOE=45°,∴OE=OA=,∴PE=OE=12,PA=PE+AE=18,∴點(diǎn)P2的坐標(biāo)為(﹣6,18).
如圖5,過P作PR⊥x軸于點(diǎn)R,延長(zhǎng)PG交x軸于點(diǎn)H.設(shè)PF=n.
在Rt△POG中,==,在Rt△PEF中,=,當(dāng)時(shí),∴,∴=,得n=2m.
∵EO∥PH,∴△AOE∽△AHP,∴,∴AH=4OA=24,即OH=18,∴m=.
在等腰Rt△PRH中,PR=HR=PH=36,∴OR=RH﹣OH=18,∴點(diǎn)P3的坐標(biāo)為(﹣18,36).
當(dāng)點(diǎn)F落在y軸負(fù)半軸時(shí),如圖6,P與A重合時(shí),在Rt△POG中,OP=OG,又∵正方形OGFE中,OG=OE,∴OP=OE,∴點(diǎn)P4的坐標(biāo)為(﹣6,0).
在圖6的基礎(chǔ)上,當(dāng)正方形邊長(zhǎng)減小時(shí),△OEP的其中兩邊之比不可能為:1;當(dāng)正方形邊長(zhǎng)增加時(shí),存在(圖7)這一種情況.
如圖7,過P作PR⊥x軸于點(diǎn)R,設(shè)PG=n.
在Rt△OPG中,=,在Rt△PEF中,==.
當(dāng)時(shí),∴,∴=,∴n=2m,由于NG=OG=m,則PN=NG=m,∵OE∥PN,∴△AOE∽△ANP,∴=1,即AN=OA=6.
在等腰Rt△ONG中,ON=m,∴12=m,∴m=,在等腰Rt△PRN中,RN=PR=6,∴點(diǎn)P5的坐標(biāo)為(﹣18,6).
所以,△OEP的其中兩邊的比能為:1,點(diǎn)P的坐標(biāo)是:P1(0,6),P2(﹣6,18),P3(﹣18,36),P4(﹣6,0),P5(﹣18,6).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把四張形狀大小完全相同的小長(zhǎng)方形卡片(如圖①)不重疊地放在一個(gè)底面為長(zhǎng)方形(長(zhǎng)為m,寬為n )的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示.則圖②中兩塊陰影部分的周長(zhǎng)和是( )
A.4n
B.4m
C.2(m+n)
D.4(m﹣n)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a,b互為相反數(shù),c,d互為倒數(shù),|e|= ,則代數(shù)式5(a+b)2+ cd﹣2e的值為( )
A.﹣
B.
C. 或﹣
D.﹣ 或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=﹣ x+1的圖象與x軸、y軸分別交于點(diǎn)A、B,以AB為邊在第一象限內(nèi)做等邊△ABC
(1)求△ABC的面積和點(diǎn)C的坐標(biāo);
(2)如果在第二象限內(nèi)有一點(diǎn)P(a, ),試用含a的代數(shù)式表示四邊形ABPO的面積.
(3)在x軸上是否存在點(diǎn)M,使△MAB為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D在AB上,將△BCD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°后得△ECF.
(1)補(bǔ)充完成圖形;
(2)若EF∥CD,求證:∠BDC=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算: ①﹣20+(﹣14)﹣(﹣18)﹣13
②(﹣1)÷(﹣1 )×3
③6÷(﹣ + )
④﹣16﹣|﹣5|+2×(﹣ )2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】a,b,是平面上任意二條直線,交點(diǎn)可以有( )
A. 1個(gè)或2個(gè)或3個(gè) B. 0個(gè)或1個(gè)
C. 1個(gè)或2個(gè) D. 以上都不對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)(m≠0)的圖象交于A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為(n,6),點(diǎn)C的坐標(biāo)為(﹣2,0),且tan∠ACO=2.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求點(diǎn)B的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com