【題目】綜合與實踐:

閱讀理解:數(shù)學興趣小組在探究如何求的值,經(jīng)過思考、討論、交流,得到以下思路:

如圖1,作,使,,延長至點,使,連接.

,則,..

請解決下列問題:

1)類比求解:求出的值;

2)問題解決:如圖2,某住宅樓的后面有一建筑物,當光線與地面的夾角是時,住宅在建筑物的墻上留下高的影子;而當光線與地面的夾角是時,住宅樓頂在地面上的影子與墻角的距離(,在一條直線上).求住宅樓的高度(結(jié)果保留根號);

3)探究發(fā)現(xiàn):如圖3,小明用硬紙片做了兩個直角三角形,在中,,;在中,,.他將的斜邊的斜邊重合在一起,并將沿方向移動.在移動過程中,,兩點始終在邊上(移動開始時點與點重合).探究在移動過程中,是否存在某個位置,使得?如果存在,直接寫出的長度;如果不存在,請說明理由.

【答案】(1);(2)住宅樓的高為.(3)存在某個位置,使得,的長為.

【解析】

1)如圖1,只需借鑒思路一或思路二的方法,即可解決問題;

2)在中,設得出,在中,根據(jù)列出關(guān)于x的方程求解即可;

3)因為在中,,,,所以;假設在移動過程中,存在某個位置使得,因為,所以CF=FE=,所以的長為.

1)如圖,延長至點,使,連接.

中,,,設,則.

,

.

2)如圖,過點,垂足為.

中,,設.

.

.

∵在中,,

,.

,

.

.

答:住宅樓的高為.

3)存在某個位置,使得,理由如下:

時,∵,

∴∠ECF=∠CEF,

∴CF=EF,

,,

,∴.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】我校為了開闊學生的視野,積極組織學生參加校外拓展活動,現(xiàn)隨機抽取我校的部分學生,調(diào)查他們最喜歡去的地方(A:方特,B:世界之窗,C:韶山,D:其他)進行數(shù)據(jù)統(tǒng)計,并繪制了兩幅不完整的統(tǒng)計圖(a),(b),請問:

1)我校共調(diào)查了   名學生;

2)將兩幅統(tǒng)計圖中不完整的部分補充完整;

3)若我校共有學生6000人,請估計我校最喜歡去韶山的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于,兩點的左側(cè)),與軸交于點,點關(guān)于拋物線的對稱軸對稱.

(1)求拋物線的解析式及點的坐標;

(2)是拋物線上的一點,當的面積是8,求出點的坐標;

(3)過直線下方的拋物線上一點軸的平行線,與直線交于點,已知點的橫坐標是,試用含的式子表示的長及△ADM的面積,并求當的長最大時的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】韜韜想在春節(jié)期間去外地過年,爸爸對韜韜說:你從背面朝上且相同,正面分別寫有1、23的三張卡片中隨機摸出一張卡片不放回,然后再隨機摸出另一張卡片,若兩次摸出的數(shù)字之和等于4,則滿足你的愿望.

1)采用畫樹狀圖法或列表法列出兩次摸出卡片的所有可能結(jié)果;

2)韜韜實現(xiàn)愿望的概率有多大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線,過點和點,與y軸交于點C,連接ACx軸于點D,連接OA,OB

求拋物線的函數(shù)表達式;

求點D的坐標;

的大小是______

繞點O旋轉(zhuǎn),旋轉(zhuǎn)后點C的對應點是點,點D的對應點是點,直線與直線交于點M,在旋轉(zhuǎn)過程中,當點M與點重合時,請直接寫出點MAB的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了測量豎直旗桿AB的高度,某綜合實踐小組在地面D處豎直放置標桿CD,并在地面上水平放置一個平面鏡E,使得BE,D在同一水平線上(如圖所示).該小組在F處測得旗桿頂A的仰角為45°,平面鏡E的俯角為67°,測得米,在標桿的F處通過平面鏡E恰好觀測到旗桿頂A(此時).

求:(1)平面鏡E到標桿底部D的距離.

2)旗桿AB的高度.

(結(jié)果保留整數(shù),參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)ykx+b的圖象與反比例函數(shù)的圖象相交于A(﹣1,m),Bn,-1)兩點.

1)求出這個一次函數(shù)的表達式;

2)求△OAB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AGBC于點G,AFDE于點F,EAF=GAC.

(1)求證:ADE∽△ABC;

(2)若AD=3,AB=5,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC為等邊三角形,點P是線段AC上一動點(點P不與A,C重合),連接BP,過點A作直線BP的垂線段,垂足為點D,將線段AD繞點A逆時針旋轉(zhuǎn)60°得到線段AE,連接DE,CE

1)求證:BDCE

2)延長EDBC于點F,求證:FBC的中點;

3)在(2)的條件下,若△ABC的邊長為1,直接寫出EF的最大值.

查看答案和解析>>

同步練習冊答案