閱讀下面材料:
如圖(1),把△ABC沿直線BC平行移動(dòng)線段BC的長(zhǎng)度,可以變到△DEC的位置;
如圖(2),以BC為軸,把△ABC翻折180°,可以變到△DBC的位置;
如圖(3),以點(diǎn)A為中心,把△ABC旋轉(zhuǎn)180°,可以變到△AED的位置.
像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平行移動(dòng)、翻折、旋轉(zhuǎn)等方法變成的.這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.
回答下列問(wèn)題:
①在圖(4)中,可以通過(guò)平行移動(dòng)、翻折、旋轉(zhuǎn)中的哪一種方法怎樣變化,使△ABE變到△ADF的位置;
②指圖中線段BE與DF之間的關(guān)系,為什么?

【答案】分析:①AB和AD是對(duì)應(yīng)線段,那么應(yīng)繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到;
②關(guān)系應(yīng)包括位置關(guān)系和數(shù)量關(guān)系.旋轉(zhuǎn)前后的三角形是全等的,∴BE=DF,延長(zhǎng)BE交DF于點(diǎn)G,利用對(duì)應(yīng)角相等,可得到垂直.
解答:解:①在圖4中可以通過(guò)旋轉(zhuǎn)90°使△ABE變到△ADF的位置.(3分)

②由全等變換的定義可知,通過(guò)旋轉(zhuǎn)90°,△ABE變到△ADF的位置,只改變位置,不改變形狀大小,
∴△ABE≌△ADF.
∴BE=DF,∠ABE=∠ADF.
∵∠ADF+∠F=90°,
∴∠ABE+∠F=90°,
∴BE⊥DF.(9分)
點(diǎn)評(píng):旋轉(zhuǎn)前后的三角形全等;所求關(guān)系應(yīng)包括位置關(guān)系和數(shù)量關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

21、閱讀下面材料:
如圖(1),把△ABC沿直線BC平行移動(dòng)線段BC的長(zhǎng)度,可以變到△DEC的位置;
如圖(2),以BC為軸,把△ABC翻折180°,可以變到△DBC的位置;
如圖(3),以點(diǎn)A為中心,把△ABC旋轉(zhuǎn)180°,可以變到△AED的位置.
像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平行移動(dòng)、翻折、旋轉(zhuǎn)等方法變成的.這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.
回答下列問(wèn)題:
①在圖(4)中,可以通過(guò)平行移動(dòng)、翻折、旋轉(zhuǎn)中的哪一種方法怎樣變化,使△ABE變到△ADF的位置;
②指圖中線段BE與DF之間的關(guān)系,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2012•房山區(qū)一模)閱讀下面材料:
如圖1,已知線段AB、CD相交于點(diǎn)O,且AB=CD,請(qǐng)你利用所學(xué)知識(shí)把線段AB、CD轉(zhuǎn)移到同一三角形中.
小強(qiáng)同學(xué)利用平移知識(shí)解決了此問(wèn)題,具體做法:
如圖2,延長(zhǎng)OD至點(diǎn)E,使DE=CO,延長(zhǎng)OA至點(diǎn)F,使AF=OB,連接EF,則△OEF為所求的三角形.
請(qǐng)你仔細(xì)體會(huì)小強(qiáng)的做法,探究并解答下列問(wèn)題:
如圖3,長(zhǎng)為2的三條線段AA′,BB′,CC′交于一點(diǎn)O,并且∠B′OA=∠C′OB=∠A′OC=60°;
(1)請(qǐng)你把三條線段AA′,BB′,CC′轉(zhuǎn)移到同一三角形中.(簡(jiǎn)要敘述畫(huà)法)
(2)連接AB′、BC′、CA′,如圖4,設(shè)△AB′O、△BC′O、△CA′O的面積分別為S1、S2、S3,則S1+S2+S3
3
(填“>”或“<”或“=”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:河北省期末題 題型:解答題

閱讀下面材料:如圖(1),把△ABC沿直線BC平行移動(dòng)線段BC的長(zhǎng)度,可以變到△DEC的位置;如圖(2),以BC為軸,把△ABC翻折180°,可以變到△DBC的位置;如圖(3),以點(diǎn)A為中心,把△ABC旋轉(zhuǎn)180°,可以變到△AED的位置.像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平行移動(dòng)、翻折、旋轉(zhuǎn)等方法變成的.這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.回答下列問(wèn)題:
①在圖(4)中,可以通過(guò)平行移動(dòng)、翻折、旋轉(zhuǎn)中的哪一種方法怎樣變化,使△ABE變到△ADF的位置;
②指圖中線段BE與DF之間的關(guān)系,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第25章《圖形的變換》?碱}集(15):25.2 旋轉(zhuǎn)變換(解析版) 題型:解答題

閱讀下面材料:
如圖(1),把△ABC沿直線BC平行移動(dòng)線段BC的長(zhǎng)度,可以變到△DEC的位置;
如圖(2),以BC為軸,把△ABC翻折180°,可以變到△DBC的位置;
如圖(3),以點(diǎn)A為中心,把△ABC旋轉(zhuǎn)180°,可以變到△AED的位置.
像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平行移動(dòng)、翻折、旋轉(zhuǎn)等方法變成的.這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.
回答下列問(wèn)題:
①在圖(4)中,可以通過(guò)平行移動(dòng)、翻折、旋轉(zhuǎn)中的哪一種方法怎樣變化,使△ABE變到△ADF的位置;
②指圖中線段BE與DF之間的關(guān)系,為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案