【題目】在一張足夠大的紙板上截取一個面積為3600平方厘米的矩形紙板ABCD,如圖1,再在矩形紙板的四個角上切去邊長相等的小正方形,再把它的邊沿虛線折起,做成一個無蓋的長方體紙盒,底面為矩形EFGH,如圖2.設小正方形的邊長為x厘米.
(1)當矩形紙板ABCD的一邊長為90厘米時,求紙盒的側面積的最大值;
(2)當EH:EF=7:2,且側面積與底面積之比為9:7時,求x的值.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E、F分別在矩形ABCD的邊BC、AD上,把這個矩形沿EF折疊后,點D恰好落在BC邊上的G點處,且∠AFG=60°
(1)求證:GE=2EC;
(2)連接CH、DG,試證明:CH∥DG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】.如圖,矩形ABCD中,O為AC中點,過點O的直線分別與AB、CD交于點E、F,連結BF交AC于點M,連結DE、BO.若∠COB=60°,FO=FC,則下列結論:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正確結論的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算
(1)8÷(﹣2)2﹣4×(﹣3)﹣|﹣6|
(2)( )×(﹣12)
(3)(4x+2y)-3(x-2y)
(4)4ab2-3[a2b-2(a2b-2ab2)]
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司開發(fā)生產(chǎn)960件新產(chǎn)品,需要加工后才能投放市場,現(xiàn)甲、乙兩個工廠都想加工這批產(chǎn)品,已知甲工廠單獨完成這批產(chǎn)品比乙工廠單獨完成這批產(chǎn)品多用20天,而乙工廠每天加工的件數(shù)是甲工廠每天加工件數(shù)的1.5倍,公司需付甲工廠加工費每天80元,乙工廠每天加工費用120元。
(1)求甲、乙兩個工廠每天各能加工多少個新產(chǎn)品?
(2)公司制定產(chǎn)品加工方案如下:可以由每個廠家單獨完成,也可以由兩個廠家同時合作完成。在加工過程中,公司派一名工程師每天來廠進行技術指導,并負擔每天5元的午餐補助費,請你幫助公司選擇一種既省時又省力的方案,并說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠車間為了了解工人日均生產(chǎn)能力的情況,隨機抽取10名工人進行測試,將獲得數(shù)據(jù)制成如下統(tǒng)計圖.
(1)求這10名工人的日均生產(chǎn)件數(shù)的平均數(shù)、眾數(shù)、中位數(shù);
(2)若日均生產(chǎn)件數(shù)不低于12件為優(yōu)秀等級,該工廠車間共有工人120人,估計日均生產(chǎn)能力為“優(yōu)秀”等級的工人約為多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,分別以AB、AC為斜邊,向△ABC的內(nèi)側作等腰Rt△ABE、Rt△ACD,點M是BC的中點,連接MD、ME.
(1)若AB=8,AC=4,求DE的長;
(2)求證:AB-AC=2DM.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(a),將兩塊直角三角尺的直角頂點C疊放在一起.
(1)若∠DCE=35°,∠ACB= ;若∠ACB=140°,則∠DCE= ;并猜想∠ACB與∠DCE的大小有何特殊關系,并說明理由;
(2)如圖(b),若是兩個同樣的三角尺60°銳角的頂點A重合在一起,則∠DAB與∠CAE的大小有何關系,請說明理由;
(3)已知∠AOB=α,∠COD=β(都是銳角),如圖(c),若把它們的頂點O重合在一起,請直接寫出∠AOD與∠BOC的大小相等的關系(用含有α,β的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,點D是邊BC上的點(與B,C兩點不重合),過點D作DE∥AC,DF∥AB,分別交AB,AC于E,F(xiàn)兩點,下列說法正確的是( )
A. 若AD⊥BC,則四邊形AEDF是矩形
B. 若AD垂直平分BC,則四邊形AEDF是矩形
C. 若BD=CD,則四邊形AEDF是菱形
D. 若AD平分∠BAC,則四邊形AEDF是菱形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com