【題目】如圖,矩形ABCD與菱形EFGH的對角線均交于點(diǎn)O,且EG∥BC,將矩形折疊,使點(diǎn)C與點(diǎn)O重合,折痕MN恰好過點(diǎn)G若AB=,EF=2,∠H=120°,則DN的長為(

A. B. C. D.

【答案】C

【解析】

試題分析:長EG交DC于P點(diǎn),連接GC、FH;如圖所示:

則CP=DP=CD=,△GCP為直角三角形,∵四邊形EFGH是菱形,∠EHG=120°,∴GH=EF=2,∠OHG=60°,EG⊥FH,∴OG=GHsin60°=2×=,由折疊的性質(zhì)得:CG=OG=,OM=CM,∠MOG=∠MCG,∴PG==,∵OG∥CM,∴∠MOG+∠OMC=180°,∴∠MCG+∠OMC=180°,∴OM∥CG,∴四邊形OGCM為平行四邊形,∵OM=CM,∴四邊形OGCM為菱形,∴CM=OG=,根據(jù)題意得:PG是梯形MCDN的中位線,∴DN+CM=2PG=,∴DN=;故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 下列調(diào)查方式合適的是( ).

A.為了了解市民對電影《南京》的感受,小華在某校隨機(jī)采訪了8名初三學(xué)生

B.為了了解全校學(xué)生用于做數(shù)學(xué)作業(yè)的時(shí)間,小民同學(xué)在網(wǎng)上向3位好友做了調(diào)查

C.為了了解嫦娥一號衛(wèi)星零部件的狀況,檢測人員采用了普查的方式

D.為了了解全國青少年兒童的睡眠時(shí)間,統(tǒng)計(jì)人員采用了普查的方式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將等邊△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)120°得到△EDC,連接AD,BD.則下列結(jié)論:

①AC=AD;②BD⊥AC;③四邊形ACED是菱形.

其中正確的個(gè)數(shù)是(

A.0 B.1 C.2 D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以正方形ABCD的一邊向形外作等邊△ABE,BD與EC交于點(diǎn)F,則∠AFD等于( )

A.60°
B.50°
C.45°
D.40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正比例函數(shù)y=x與反比例函數(shù)y= 的圖像交于點(diǎn)A、點(diǎn)C,AB⊥x軸于點(diǎn)B,CD⊥x軸于點(diǎn)D,則四邊形ABCD的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l:y=x﹣1與x軸交于點(diǎn)A1,如圖所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1,使得點(diǎn)A1、A2、A3、…在直線l上,點(diǎn)C1、C2、C3、…在y軸正半軸上,則點(diǎn)Bn的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的面積為3cm2,E為BC邊上一點(diǎn),BAE=30°,F(xiàn)為AE的中點(diǎn),過點(diǎn)F作直線分別與AB,DC相交于點(diǎn)M,N.若MN=AE,則AM的長等于 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知2a=3,2b=6,2c=12,試判斷a,b,c之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x 的一元二次方程x2+2x-8=0的一個(gè)根為2,則它的另一個(gè)根為______.

查看答案和解析>>

同步練習(xí)冊答案