(2013•六盤水)把邊長(zhǎng)為1的正方形紙片OABC放在直線m上,OA邊在直線m上,然后將正方形紙片繞著頂點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)90°,此時(shí),點(diǎn)O運(yùn)動(dòng)到了點(diǎn)O1處(即點(diǎn)B處),點(diǎn)C運(yùn)動(dòng)到了點(diǎn)C1處,點(diǎn)B運(yùn)動(dòng)到了點(diǎn)B1處,又將正方形紙片AO1C1B1繞B1點(diǎn),按順時(shí)針?lè)较蛐D(zhuǎn)90°…,按上述方法經(jīng)過(guò)4次旋轉(zhuǎn)后,頂點(diǎn)O經(jīng)過(guò)的總路程為
2
+2
2
π
2
+2
2
π
,經(jīng)過(guò)61次旋轉(zhuǎn)后,頂點(diǎn)O經(jīng)過(guò)的總路程為
15
2
+31
2
π
15
2
+31
2
π
分析:為了便于標(biāo)注字母,且更清晰的觀察,每次旋轉(zhuǎn)后向右稍微平移一點(diǎn),作出前幾次旋轉(zhuǎn)后的圖形,點(diǎn)O的第1次旋轉(zhuǎn)路線是以正方形的邊長(zhǎng)為半徑,以90°圓心角的扇形,第2次旋轉(zhuǎn)路線是以正方形的對(duì)角線長(zhǎng)為半徑,以90°圓心角的扇形,第3次旋轉(zhuǎn)路線是以正方形的邊長(zhǎng)為半徑,以90°圓心角的扇形;
①根據(jù)弧長(zhǎng)公式列式進(jìn)行計(jì)算即可得解;
②求出61次旋轉(zhuǎn)中有幾個(gè)4次,然后根據(jù)以上的結(jié)論進(jìn)行計(jì)算即可求解.
解答:解:如圖,為了便于標(biāo)注字母,且位置更清晰,每次旋轉(zhuǎn)后不防向右移動(dòng)一點(diǎn),
第1次旋轉(zhuǎn)路線是以正方形的邊長(zhǎng)為半徑,以90°圓心角的扇形,路線長(zhǎng)為
90π×1
180
=
1
2
π
;
第2次旋轉(zhuǎn)路線是以正方形的對(duì)角線長(zhǎng)
2
為半徑,以90°圓心角的扇形,路線長(zhǎng)為
90π×
2
180
=
2
2
π
;
第3次旋轉(zhuǎn)路線是以正方形的邊長(zhǎng)為半徑,以90°圓心角的扇形,路線長(zhǎng)為
90π×1
180
=
1
2
π
;
第4次旋轉(zhuǎn)點(diǎn)O沒(méi)有移動(dòng),旋轉(zhuǎn)后于最初正方形的放置相同,
因此4次旋轉(zhuǎn),頂點(diǎn)O經(jīng)過(guò)的路線長(zhǎng)為
1
2
π
+
2
2
π
+
1
2
π
=
2
+2
2
π
;
∵61÷4=15…1,
∴經(jīng)過(guò)61次旋轉(zhuǎn),頂點(diǎn)O經(jīng)過(guò)的路程是4次旋轉(zhuǎn)路程的15倍加上第1次路線長(zhǎng),即
2
+2
2
π
×15+
1
2
π
=
15
2
+31
2
π

故答案分別是:
2
+2
2
π
;
15
2
+31
2
π

點(diǎn)評(píng):本題考查了旋轉(zhuǎn)變換的性質(zhì),正方形的性質(zhì)以及弧長(zhǎng)的計(jì)算,讀懂題意,并根據(jù)題意作出圖形更形象直觀,且有利于旋轉(zhuǎn)變換規(guī)律的發(fā)現(xiàn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•六盤水)如圖,梯形ABCD中,AD∥BC,AD=4,AB=5,BC=10,CD的垂直平分線交BC于E,連接DE,則四邊形ABED的周長(zhǎng)等于
19
19

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•六盤水)(1)觀察發(fā)現(xiàn)
   如圖(1):若點(diǎn)A、B在直線m同側(cè),在直線m上找一點(diǎn)P,使AP+BP的值最小,做法如下:
   作點(diǎn)B關(guān)于直線m的對(duì)稱點(diǎn)B′,連接AB′,與直線m的交點(diǎn)就是所求的點(diǎn)P,線段AB′的長(zhǎng)度即為AP+BP的最小值.

   如圖(2):在等邊三角形ABC中,AB=2,點(diǎn)E是AB的中點(diǎn),AD是高,在AD上找一點(diǎn)P,使BP+PE的值最小,做法如下:
作點(diǎn)B關(guān)于AD的對(duì)稱點(diǎn),恰好與點(diǎn)C重合,連接CE交AD于一點(diǎn),則這點(diǎn)就是所求的點(diǎn)P,故BP+PE的最小值為
3
3

 (2)實(shí)踐運(yùn)用
   如圖(3):已知⊙O的直徑CD為2,
AC
的度數(shù)為60°,點(diǎn)B是
AC 
的中點(diǎn),在直徑CD上作出點(diǎn)P,使BP+AP的值最小,則BP+AP的值最小,則BP+AP的最小值為
2
2


  (3)拓展延伸
如圖(4):點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),分別在邊AB、BC上作出點(diǎn)M,點(diǎn)N,使PM+PN+MN的值最小,保留作圖痕跡,不寫作法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•六盤水)-2013相反數(shù)( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•六盤水)下列圖形中,陰影部分面積最大的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•六盤水)下面四個(gè)幾何體中,主視圖是圓的幾何體是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案