【題目】如圖,在Rt△ABC中,∠ABC=90°,AC的垂直平分線分別與AC,BC及AB的延長線相交于點D,E,F,⊙O是△BEF的外接圓,∠EBF的平分線交EF于點G,交⊙O于點H,連接BD,FH.
(1)試判斷BD與⊙O的位置關系,并說明理由;
(2)當AB=BE=1時,求⊙O的面積;
(3)在(2)的條件下,求HG的長.
【答案】(1)BD與⊙O相切,見解析;(2)π;(3)
【解析】
(1)連接OB,證得∠DBO=90°,即可得到BD與⊙O相切;
(2)由等腰直角三角形的性質得到CF=BF,由于DF垂直平分AC,得到AF=CF=AB+BF=1+BF=BF,根據(jù)勾股定理得到EF的長,根據(jù)圓的面積公式即可得到結論;
(3)根據(jù)等腰直角三角形和角平分線的定義即可得到結論.
解:(1)BD與⊙O相切,
理由:如圖1,連接OB,
∵OB=OF,
∴∠OBF=∠OFB,
∵∠ABC=90°,AD=CD,
∴BD=CD,∠EBF=90°,
∴∠C=∠DBC,EF為直徑,
∴點O在EF上,
∵∠C=∠BFE,
∴∠DBC=∠OBF,
∵∠CBO+∠OBF=90°,
∴∠DBC+∠CBO=90°,
∴∠DBO=90°,
∴BD與⊙O相切;
(2)如圖2,連接CF,HE,
∵∠CDE=90°,∠ABC=90°,
∴∠DEC=∠A,
∵∠CED=∠FEB,
∴∠FEB=∠A.
∵AB=BE,∠ABC=∠CBF=90°,
∴△ABC≌△EBF(ASA),
∵BC=BF,
∴CF=BF,
∵DF垂直平分AC,
∴AF=CF=AB+BF=1+BF=BF,
∴BF=+1,
∴EF=
∵∠CBF=90°,
∴EF是⊙O的直徑,
∴⊙O的面積=(EF)2π=π=π;
(3)如圖3,連接AE
∵AB=BE,∠ABEspan>=90°,
∴∠AEB=45°,
∵EA=EC,
∴∠C=22.5°,
∴∠H=∠BEG=∠CED=90°﹣22.5°=67.5°,
∵BH平分∠CBF,
∴∠EBG=∠HBF=45°,
∴∠BGE=∠BFH=67.5°,
∴BG=BE=1,BH=BF=1+,
∴HG=BH﹣BG=.
科目:初中數(shù)學 來源: 題型:
【題目】山西省第十五屆運動會乒乓球比賽于2018年8月13日上午在山西省體育博物館的比賽場館內正式拉開了帷幕.第十五屆運動會競技體育組乒乓球項目產生的決賽運動員名單中太原市共27人,其中甲組有甲、乙、丙、丁四名女子運動員,若進行一次乒乓球單打比賽,要通過抽簽從中選出兩名運動員打第一場比賽.
(1)若已確定甲打第一場,再從其余三名運動員中隨機選取一位,求恰好選中乙的概率;
(2)若兩名運動員都不確定,請用樹狀圖法或列表法,求恰好選中甲、乙兩名運動員的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,足球場上守門員在處開出一高球,球從離地面1米的處飛出(在軸上),運動員乙在距點6米的處發(fā)現(xiàn)球在自己頭的正上方達到最高點,距地面約4米高,球落地后又一次彈起.據(jù)實驗測算,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.
(1)求足球開始飛出到第一次落地時,該拋物線的表達式.
(2)足球第一次落地點距守門員多少米?(取)
(3)運動員乙要搶到第二個落點,他應再向前跑多少米?
(取)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC沿BC翻折得到△DBC,再將△DBC繞C點逆時針旋轉60°得到△FEC,延長BD交EF于H,已知∠ABC=30°,∠BAC=90°,AC=1,則四邊形CDHF的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系xOy中,過原點O及點A(0,4)、C(12,0)作矩形OABC,∠AOC的平分線交AB于點D.點P從點O出發(fā),以每秒2個單位長度的速度沿射線OD方向移動;同時點Q從點O出發(fā),以每秒4個單位長度的速度沿x軸正方向移動.設移動時間為t秒.
(1)當點P移動到點D時,求出此時t的值.
(2)當t為何值時,△PQB為直角三角形.
(3)已知過O、P、Q三點的拋物線解析式為y=﹣.問是否存在某一時刻t,將△PQB繞某點旋轉180°后,三個對應頂點恰好都落在上述拋物線上?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為直線x=,且經過點(2,0),下列說法:
①abc<0;
②a+b=0;
③4a+2b+c<0;
④若(﹣2,y1),(﹣3,y2)是拋物線上的兩點,則y1<y2,
其中說法正確的是( 。
A. ①②④ B. ③④ C. ①③④ D. ①②
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】撫順某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結果分為A,B,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:
(1)本次抽樣調查共抽取了多少名學生?
(2)求測試結果為C等級的學生數(shù),并補全條形圖;
(3)若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結果為D等級的學生有多少名?
(4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com