【題目】已知A0 A1= A1A2= A2A3…,圖中的螺旋形由一系列直角三角形組成,則第n個三角形的面積為_________,周長為___________.
【答案】
【解析】
第一個三角形的斜邊正好是第二個三角形的直角邊,依次進行下去,且有一個直角邊的邊長為1.從而可求出面積和周長,得出規(guī)律即可.
解:設(shè)三角形的面積為S,
根據(jù)勾股定理:
第一個三角形中:OA12=1+1=2,則OA12=,S1=1×1÷2=;周長為1+1+=1+1+;
第二個三角形中:OA22=OA12+1=1+1+1=3,則OA2=,S2=OA1×1÷2=×1÷2=;周長為1++;
第三個三角形中:OA32=OA22+1=1+1+1+1=4,則OA3=2,S3=OA2×1÷2=,周長為1++=3+;
…
∴第n個三角形的面積Sn=,周長為:.
故答案為:,.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了創(chuàng)建文明城市,增強學(xué)生的環(huán)保意識.隨機抽取8名學(xué)生,對他們的垃圾分類投放情況進行調(diào)查,這8名學(xué)生分別標(biāo)記為,其中“√”表示投放正確,“×”表示投放錯誤,統(tǒng)計情況如下表.
學(xué)生 垃圾類別 | ||||||||
廚余垃圾 | √ | √ | √ | √ | √ | √ | √ | √ |
可回收垃圾 | √ | × | √ | × | × | √ | √ | √ |
有害垃圾 | × | √ | × | √ | √ | × | × | √ |
其他垃圾 | × | √ | √ | × | × | √ | √ | √ |
(1)求8名學(xué)生中至少有三類垃圾投放正確的概率;
(2)為進一步了解垃圾分類投放情況,現(xiàn)從8名學(xué)生里“有害垃圾”投放錯誤的學(xué)生中隨機抽取兩人接受采訪,試用標(biāo)記的字母列舉所有可能抽取的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要測量一垂直于水平面的建筑物AB的高度,小明從建筑物底端B出發(fā),沿水平方向向右走30米到達點C,又經(jīng)過一段坡角為30°,長為20米的斜坡CD,然后再沿水平方向向右走了50米到達點E(A,B,C,D,E均在同一平面內(nèi)).在E處測得建筑物頂端A的仰角為24°,求建筑物AB的高度.(結(jié)果保留根號,參考數(shù)據(jù):sin24°≈,cos24°≈,tan24°=)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知菱形在平面直角坐標(biāo)系的位置如圖所示,頂點在軸的正半軸上,,,點是對角線上的一個動點,點的坐標(biāo)為,則最小值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】黃石市在創(chuàng)建國家級文明衛(wèi)生城市中,綠化檔次不斷提升.某校計劃購進A,B兩種樹木共100棵進行校園綠化升級,經(jīng)市場調(diào)查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.
(1)求A種,B種樹木每棵各多少元?
(2)因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學(xué)校與中標(biāo)公司簽訂的合同中規(guī)定:在市場價格不變的情況下(不考慮其他因素),實際付款總金額按市場價九折優(yōu)惠,請設(shè)計一種購買樹木的方案,使實際所花費用最省,并求出最省的費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名同學(xué)分別進行6次射擊訓(xùn)練,訓(xùn)練成績(單位:環(huán))如下表
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六交 | |
甲 | 9 | 8 | 6 | 7 | 8 | 10 |
乙 | 8 | 7 | 9 | 7 | 8 | 8 |
對他們的訓(xùn)練成績作如下分析,其中說法正確的是( 。
A. 他們訓(xùn)練成績的平均數(shù)相同 B. 他們訓(xùn)練成績的中位數(shù)不同
C. 他們訓(xùn)練成績的眾數(shù)不同 D. 他們訓(xùn)練成績的方差不同
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當(dāng)x≥2時,y隨x的增大而增大,且-2≤x≤1時,y的最大值為9,則a的值為
A. 1或 B. -或 C. D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(4,3)是反比例函數(shù)y=在第一象限圖象上一點,連接OA,過A作AB∥x軸,截取AB=OA(B在A右側(cè)),連接OB,交反比例函數(shù)y=的圖象于點P.
(1)求反比例函數(shù)y=的表達式;
(2)求點B的坐標(biāo);
(3)求△OAP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC內(nèi)接于⊙O,AD平分∠BAC交⊙O于點D,交BC于點K,連接DB、DC.
(1)如圖1,求證:DB=DC;
(2)如圖2,點E、F在⊙O上,連接EF交DB、DC于點G、H,若DG=CH,求證:EG=FH;
(3)如圖3,在(2)的條件下,BC經(jīng)過圓心O,且AD⊥EF,BM平分∠ABC交AD于點M,DK=BM,連接GK、HK、CM,若△BDK與△CKM的面積差為1,求四邊形DGKH的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com