【題目】如圖O的半徑為1cm,弦AB、CD的長度分別為,則弦AC、BD所夾的銳角= .

【答案】75°

【解析】根據(jù)勾股定理的逆定理可證AOB是等腰直角三角形,故可求OAB=OBA=45°,又由已知可證COD是等邊三角形,所以ODC=OCD=60°,根據(jù)圓周角的性質可證CDB=CAB,而ODB=OBD,所以CAB+OBD=CDB+ODB=ODC=60°,再根據(jù)三角形的內(nèi)角和定理可求α

解:連接OA、OB、OC、OD,


OA=OB=OC=OD=1,AB=,CD=1,
OA2+OB2=AB2,
∴△AOB是等腰直角三角形,
COD是等邊三角形,
∴∠OAB=OBA=45°,ODC=OCD=60°,
∵∠CDB=CAB,ODB=OBD,
∴α=180°-CAB-OBA-OBD=180°-OBA-(CDB+ODB)=180°-45°-60°=75°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】八(1)班同學為了解2015年某小區(qū)家庭月均用水情況,隨機調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進行如下整理,

月均用水量x(t)

頻數(shù)(戶)

頻率

0<x≤5

6

0.12

5<x≤10

m

0.24

10<x≤15

16

0.32

15<x≤20

10

0.20

20<x≤25

4

n

60≤x<70

2

0.04

請解答以下問題:

(1)求出嗎、M,n的值,并把頻數(shù)分布直方圖補充完整;

(2)若該小區(qū)有1000戶家庭,求該小區(qū)月均用水量超過10t的家庭大約有多少戶?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,C90°,AC8,BC6,DAB的中點,點E在邊AC上,將ADE沿DE翻折,使點A落在點A處,當AEAC時,AB_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆時針旋轉一定角度后與△ADE重合,且點C恰好成為AD中點,如圖

(1)指出旋轉中心,并求出旋轉角的度數(shù).

(2)求出∠BAE的度數(shù)和AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線分別交x軸、y軸于點A(2,0)、B(0,4),點P是線段AB上一動點,過點PPCx軸于點C,交拋物線于點D

(1)

①求拋物線的解析式;

②當線段PD的長度最大時,求點P的坐標;

(2)當點P的橫坐標為1時,是否存在這樣的拋物線,使得以BP、D為頂點的三角形與AOB相似?若存在,求出滿足條件的拋物線的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC中,AB=AC,以AB為直徑的⊙OBC于點D,交AC于點E.

(1)∠BAC為銳角時,如圖,求證:∠CBE=∠BAC;

(2)∠BAC為鈍角時,如圖②,CA的延長線與⊙O相交于點E,(1)中的結論是否仍然成立?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲乙兩位同學利用燈光下的影子來測量一路燈A的高度,如圖,當甲走到點C處時,乙測得甲直立身高CD與其影子長CE正好相等,接著甲沿BC方向繼續(xù)向前走,走到點E處時,甲直立身高EF的影子恰好是線段EG,并測得EG=2.5m.已知甲直立時的身高為1.75m,求路燈的高AB的長.(結果精確到0.1m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請認真閱讀下面的數(shù)學小探究系列,完成所提出的問題:

(1)探究1,如圖①,在等腰直角三角形ABC中,∠ACB=90°,BC=3,將邊AB繞點B順時針旋轉90°得到線段BD,連接CD,過點D做BC邊上的高DE,則DE與BC的數(shù)量關系是   ,△BCD的面積為   ;

(2)探究2,如圖②,在一般的Rt△ABC中,∠ACB=90°,BC=a,將邊AB繞點B順時針旋轉90°得到線段BD,連接CD,請用含a的式子表示△BCD的面積,并說明理由;

(3)探究3:如圖③,在等腰三角形ABC中,AB=AC,BC=a,將邊AB繞點B順時針旋轉90°得到線段BD,連接CD,試探究用含a的式子表示△BCD的面積,要有探究過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,已知點P是反比例函數(shù)y(x>0)圖象上一個動點,以P為圓心的圓始終與y軸相切,設切點為A

(1)如圖1,當P運動到與x軸相切,設切點為K,試判斷四邊形OKPA的形狀,并說明理由;

(2)如圖2,當P運動到與x軸相交,設交點為點B、C.當四邊形ABCP是菱形時,求出點A、B、C的坐標

(3)(2)的條件下,求出經(jīng)過A、B、C三點的拋物線的解析式.

查看答案和解析>>

同步練習冊答案