如圖1,拋物線軸交于兩點,與軸交于點,連結(jié)AC,若
(1)求拋物線的解析式;
(2)拋物線對稱軸上有一動點P,當(dāng)時,求出點的坐標(biāo);
(3)如圖2所示,連結(jié),是線段上(不與、重合)的一個動點.過點作直線,交拋物線于點,連結(jié),設(shè)點的橫坐標(biāo)為.當(dāng)t為何值時,的面積最大?最大面積為多少?
(1) y=x2-3x+2;;(2)()或(,);(3)t=1時,S△BCN的最大值為1.

試題分析:(1)已知了C點的坐標(biāo),即可得到OC的長,根據(jù)∠OAC的正切值即可求出OA的長,由此可得到A點的坐標(biāo),將A、C的坐標(biāo)代入拋物線中,即可確定該二次函數(shù)的解析式;
(2)根據(jù)拋物線的解析式即可確定其對稱軸方程,由此可得到點P的橫坐標(biāo);若∠APC=90°,則∠PAE和∠CPD是同角的余角,因此兩角相等,則它們的正切值也相等,由此可求出線段PE的長,即可得到點P點的坐標(biāo);(用相似三角形求解亦可)
(3)根據(jù)B、C的坐標(biāo)易求得直線BC的解析式,已知了點M的橫坐標(biāo)為t,根據(jù)直線BC和拋物線的解析式,即可用t表示出M、N的縱坐標(biāo),由此可求得MN的長,以MN為底,B點橫坐標(biāo)的絕對值為高,即可求出△BNC的面積(或者理解為△BNC的面積是△CMN和△MNB的面積和),由此可得到關(guān)于S(△BNC的面積)、t的函數(shù)關(guān)系式,根據(jù)所得函數(shù)的性質(zhì)即可求得S的最大值及對應(yīng)的t的值.
試題解析:(1)∵拋物線y=x2+bx+c過點C(0,2),
∴c=2;
又∵tan∠OAC==2,
∴OA=1,即A(1,0);
又∵點A在拋物線y=x2+bx+2上,
∴0=12+b×1+2,b=-3;
∴拋物線對應(yīng)的二次函數(shù)的解析式為y=x2-3x+2;
(2)存在.
過點C作對稱軸l的垂線,垂足為D,如圖所示,

∴x=-;
∴AE=OE-OA=
∵∠APC=90°,
∴tan∠PAE=tan∠CPD,
,即,
解得PE=或PE=,
∴點P的坐標(biāo)為(,)或(,).
(3)如圖所示,易得直線BC的解析式為:y=-x+2,

∵點M是直線l′和線段BC的交點,
∴M點的坐標(biāo)為(t,-t+2)(0<t<2),
∴MN=-t+2-(t2-3t+2)=-t2+2t,
∴S△BCN=S△MNC+S△MNB=MN·t+MN·(2-t),
=MN·(t+2-t)=MN=-t2+2t(0<t<2),
∴S△BCN=-t2+2t=-(t-1)2+1,
∴當(dāng)t=1時,S△BCN的最大值為1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在平面直角坐標(biāo)系中,將拋物線y=3x2先向右平移1個單位,再向上平移2個單位,得到的拋物線的解析式是( 。
A.y=3(x+1)2+2B.y=3(x+1)2﹣2
C.y=3(x﹣1)2+2D.y=3(x﹣1)2﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)(a≠0)的圖象經(jīng)過點A,點B.
(1)求二次函數(shù)的表達式;
(2)若反比例函數(shù)(x>0)的圖象與二次函數(shù)(a≠0)的圖象在第一象限內(nèi)交于點,落在兩個相鄰的正整數(shù)之間,請你直接寫出這兩個相鄰的正整數(shù);
(3)若反比例函數(shù)(x>0,k>0)的圖象與二次函數(shù)(a≠0)的圖象在第一象限內(nèi)交于點,且,試求實數(shù)k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

矩形紙片ABCD中,AB=5,AD=4.
(1)如圖1,四邊形MNEF是在矩形紙片ABCD中裁剪出一個正方形.你能否在該矩形中裁剪出一個面積最大的正方形,最大面積是多少?說明理由;
(2)請用矩形紙片ABCD剪拼成一個面積最大的正方形.要求:在圖2的矩形ABCD中畫出裁剪線,并在網(wǎng)格中畫出用裁剪出的紙片拼成的正方形示意圖(使正方形的頂點都在網(wǎng)格的格點上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線經(jīng)過點A(3,2),B(0,1)和點C
(1)求拋物線的解析式;
(2)如圖,若拋物線的頂點為P,點A關(guān)于對稱軸的對稱點為M,過M的直線交拋物線于另一點N(N在對稱軸右邊),交對稱軸于F,若,求點F的坐標(biāo);
(3)在(2)的條件下,在y軸上是否存在點G,使△BMA與△MBG相似?若存在,求點G的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,現(xiàn)有一張邊長為4的正方形紙片ABCD,點P為正方形AD邊上的一點(不與點A、點D重合)將正方形紙片折疊,使點B落在P處,點C落在G處,PG交DC于H,折痕為EF,連接BP、BH.
(1)求證:∠APB=∠BPH;
(2)當(dāng)點P在邊AD上移動時,△PDH的周長是否發(fā)生變化?并證明你的結(jié)論;
(3)設(shè)AP為x,四邊形EFGP的面積為S,求出S與x的函數(shù)關(guān)系式,試問S是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線(b,c均為常數(shù))與x軸交于兩點,與y軸交于點
(1)求該拋物線對應(yīng)的函數(shù)表達式;
(2)若P是拋物線上一點,且點P到拋物線的對稱軸的距離為3,請直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

實驗數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5時內(nèi)其血液中酒精含量y(毫克/百毫升)與時間(時)的關(guān)系可近似地用二次函數(shù)刻畫;1.5時后(包括1.5時)y與x可近似地用反比例函數(shù)(k>0)刻畫(如圖所示).
(1)根據(jù)上述數(shù)學(xué)模型計算:
①喝酒后幾時血液中的酒精含量達到最大值?最大值為多少?
②當(dāng)=5時,y=45.求k的值.
(2)按國家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,拋物線y=-x2+bx+c的頂點為Q,與x軸交于A(-1,0)、B(5,0)兩點,與y軸交于點C.
(1)求拋物線的解析式及其頂點Q的坐標(biāo);
(2)在該拋物線的對稱軸上求一點P,使得△PAC的周長最小,請在圖中畫出點P的位置,并求點P的坐標(biāo);
(3)如圖2,若點D是第一象限拋物線上的一個動點,過D作DE⊥x軸,垂足為E.
①有一個同學(xué)說:“在第一象限拋物線上的所有點中,拋物線的頂點Q與x軸相距最遠,所以當(dāng)點D運動至點Q時,折線D-E-O的長度最長”,這個同學(xué)的說法正確嗎?請說明理由.
②若DE與直線BC交于點F.試探究:四邊形DCEB能否為平行四邊形?若能,請直接寫出點D的坐標(biāo);若不能,請簡要說明理由.

查看答案和解析>>

同步練習(xí)冊答案