【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角,墻DF足夠長,墻DE長為12米,現(xiàn)用20米長的籬笆圍成一個矩形花園ABCD,點(diǎn)C在墻DF上,點(diǎn)A在墻DE上,(籬笆只圍AB,BC兩邊).

(1)如何才能圍成矩形花園的面積為75m2?
(2)能夠圍成面積為101m2的矩形花園嗎?如能說明圍法,如不能,說明理由.

【答案】
(1)

解:設(shè)BC=x米((0<x≤12),則AB=20﹣x米,

依題意得:x(20﹣x)=75,即x2﹣20x+75=0,

解得x1=5,x2=15(不合題意,舍去),

答:當(dāng)BC=5米,AB=15米時,矩形的面積為75米2


(2)

解:不能圍成面積為101m2的矩形花園,

因?yàn)椋和?)得,設(shè)BC=x米,得方程x(20﹣x)=101,即x2﹣20x+101=0△=b2﹣4ac=(﹣20)2﹣4×1×101=﹣4<0,

∴原方程無實(shí)根,

答:不能圍成面積為101m2的矩形花園.


【解析】(1)設(shè)BC=x米((0<x≤12),則AB=(20﹣x)米,利用矩形的面積公式列出方程并解答;(2)解題思路同(1),列出方程,利用根的判別式的符號來判定方程的根的情況,即能否圍成面積為101m2的矩形花園.
【考點(diǎn)精析】本題主要考查了矩形的性質(zhì)的相關(guān)知識點(diǎn),需要掌握矩形的四個角都是直角,矩形的對角線相等才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在由6個邊長為1的小正方形組成的方格中:

(1)如圖(1),A、B、C是三個格點(diǎn)(即小正方形的頂點(diǎn)),判斷ABBC的關(guān)系,并說明理由;

(2)如圖(2),連結(jié)三格和兩格的對角線,求∠α+β的度數(shù)(要求:畫出示意圖并給出證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有公路l1同側(cè)、l2異側(cè)的兩個城鎮(zhèn)A,B,如下圖.電信部門要修建一座信號發(fā)射塔,按照設(shè)計(jì)要求,發(fā)射塔到兩個城鎮(zhèn)A,B的距離必須相等,到兩條公路l1,l2的距離也必須相等,發(fā)射塔C應(yīng)修建在什么位置?請用尺規(guī)作圖找出所有符合條件的點(diǎn),注明點(diǎn)C的位置.(保留作圖痕跡,不要求寫出畫法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料并解決有關(guān)問題:

我們知道:|x|=.現(xiàn)在我們可以用這一結(jié)論來化簡含有絕對值的代數(shù)式,現(xiàn)在我們可以用這一結(jié)論來化簡含有絕對值的代數(shù)式,如化簡代數(shù)式|x+1|+|x2|時,可令x+1=0x2=0,分別求得x=1x=2(稱﹣1,2分別為|x+1||x2|的零點(diǎn)值).在實(shí)數(shù)范圍內(nèi),零點(diǎn)值x=1和,x=2可將全體實(shí)數(shù)分成不重復(fù)且不遺漏的如下3種情況:

①x﹣1;②﹣1≤x2;③x≥2

從而化簡代數(shù)式|x+1|+|x﹣2|可分以下3種情況:

當(dāng)x﹣1時,原式=﹣x+1x﹣2=﹣2x+1

當(dāng)﹣1≤x2時,原式=x+1﹣x﹣2=3

當(dāng)x≥2時,原式=x+1+x2=2x1.綜上討論,原式=

通過以上閱讀,請你解決以下問題:

1)化簡代數(shù)式|x+2|+|x﹣4|

2)求|x﹣1|﹣4|x+1|的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l過點(diǎn)M(3,0),且平行于y軸.

(1)如果△ABC三個頂點(diǎn)的坐標(biāo)分別是A(﹣2,0),B(﹣1,0),C(﹣1,2),△ABC關(guān)于y軸的對稱圖形是△A1B1C1,△A1B1C1關(guān)于直線l的對稱圖形是△A2B2C2,寫出△A2B2C2的三個頂點(diǎn)的坐標(biāo);

(2)如果點(diǎn)P的坐標(biāo)是(﹣a,0),其中a>0,點(diǎn)P關(guān)于y軸的對稱點(diǎn)是P1,點(diǎn)P1關(guān)于直線l的對稱點(diǎn)是P2,求PP2的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:平面直角坐標(biāo)系中,四邊形OABC的頂點(diǎn)分別為O(0,0)、A(5,0)、B(m,2)、C(m﹣5,2).
(1)問:是否存在這樣的m,使得在邊BC上總存在點(diǎn)P,使∠OPA=90°?若存在,求出m的取值范圍;若不存在,請說明理由.
(2)當(dāng)∠AOC與∠OAB的平分線的交點(diǎn)Q在邊BC上時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次暑假旅游中,小亮在仙島湖的游船上(A處),測得湖西岸的山峰太婆尖(C處)和湖東岸的山峰老君嶺(D處)的仰角都是45°.游船向東航行100米后(B處),測得太婆尖,老君嶺的仰角分別為30°,60°.試問太婆尖、老君嶺的高度為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

(1)如圖1,在正方形ABCD中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長線上一點(diǎn),N是DCP的平分線上一點(diǎn).若AMN=90°,求證:AM=MN.

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.

證明:在邊AB上截取AE=MC,連ME.正方形ABCD中,B=BCD=90°,AB=BC.

∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=MAB=MAE.

(下面請你完成余下的證明過程)

(2)若將(1)中的正方形ABCD改為正三角形ABC(如圖2),N是ACP的平分線上一點(diǎn),則當(dāng)AMN=60°時,結(jié)論AM=MN是否還成立?請說明理由.

(3)若將(1)中的正方形ABCD改為邊形ABCD……X,請你作出猜想:當(dāng)AMN= °時,結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥ABE,F(xiàn)AC上,BD=DF;

證明:(1)CF=EB.

(2)AB=AF+2EB.

查看答案和解析>>

同步練習(xí)冊答案