【題目】如圖,點(diǎn)EF,GH分別位于邊長(zhǎng)為a的正方形ABCD的四條邊上,四邊形EFGH也是正方形,AGx,正方形EFGH的面積為y

1)當(dāng)a2y3時(shí),求x的值;

2)當(dāng)x為何值時(shí),y的值最小?最小值是多少?

【答案】1x;(2)當(dāng)xa(即EAB邊上的中點(diǎn))時(shí),正方形EFGH的面積最小,最小的面積為a2

【解析】

1)設(shè)正方形ABCD的邊長(zhǎng)為a,AEx,則BEax,易證△AHE≌△BEF≌△CFG≌△DHG,再利用勾股定理求出EF的長(zhǎng),進(jìn)而得到正方形EFGH的面積;

2)利用二次函數(shù)的性質(zhì)即可求出面積的最小值.

解:設(shè)正方形ABCD的邊長(zhǎng)為a,AEx,則BEax,

∵四邊形EFGH是正方形,

EHEF,∠HEF90°,

∴∠AEH+BEF90°,

∵∠AEH+AHE90°,

∴∠AHE=∠BEF

在△AHE和△BEF中,,

∴△AHE≌△BEFAAS),

同理可證△AHE≌△BEF≌△CFG≌△DHG

AEBFCGDHx,AHBECFDGax

EF2BE2+BF2=(ax2+x22x22ax+a2

∴正方形EFGH的面積yEF22x22ax+a2,

當(dāng)a2,y3時(shí),2x24x+43

解得:x;

2)∵y2x22ax+a22xa2+a2,

即:當(dāng)xa(即EAB邊上的中點(diǎn))時(shí),正方形EFGH的面積最小,最小的面積為a2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,OA=2OB=4,以A點(diǎn)為頂點(diǎn),AB為腰在第三象限作等腰直角ABC.

1)求C點(diǎn)的坐標(biāo).

2)如圖2,OA=2,Py軸負(fù)半軸上的一個(gè)動(dòng)點(diǎn),若以P為直角頂點(diǎn),PA為腰作等腰直角APD,過DDEx軸于E點(diǎn),求OPDE的值.

3)如圖3,點(diǎn)F坐標(biāo)為(-4,-4),點(diǎn)G0m)在y軸負(fù)半軸,點(diǎn)Hn0)在x軸的正半軸,且FHFG,求m+n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, O ABC 的外接圓,AB 為直徑,∠BAC 的平分線交O 于點(diǎn) D,過點(diǎn) D DE⊥AC 分別交 AC、AB 的延長(zhǎng)線于點(diǎn) E、F

1)求證:EF O 的切線;

2)若 AC=6,CE=3,求弧BD 的長(zhǎng)度.(結(jié)果保留π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一種拉桿式旅行箱的示意圖如圖所示,箱體長(zhǎng)AB=50cm,拉桿最大伸長(zhǎng)距離BC=35cm,(點(diǎn)A、B、C在同一條直線上),在箱體的底端裝有一圓形滾輪⊙A,⊙A與水平地面切于點(diǎn)D,AE∥DN,某一時(shí)刻,點(diǎn)B距離水平面38cm,點(diǎn)C距離水平面59cm.

(1)求圓形滾輪的半徑AD的長(zhǎng);

(2)當(dāng)人的手自然下垂拉旅行箱時(shí),人感覺較為舒服,已知某人的手自然下垂在點(diǎn)C處且拉桿達(dá)到最大延伸距離時(shí),點(diǎn)C距離水平地面73.5cm,求此時(shí)拉桿箱與水平面AE所成角∠CAE的大。ň_到1°,參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,AB9,BC6,∠B90°,將△ABC折疊,使A點(diǎn)與BC的中點(diǎn)D重合,折痕為PQ,則△PQD的面積為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】昆明市教育局為了了解初三年級(jí)近期在家每天的自學(xué)情況,隨機(jī)對(duì)某中學(xué)部分初三學(xué)生進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果分為A,B,C,D四個(gè)等級(jí),設(shè)學(xué)習(xí)時(shí)間為t(小時(shí)),,根據(jù)調(diào)查結(jié)果繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中信息解答下列問題:

1)本次抽樣調(diào)查共抽取了多少名學(xué)生?并將條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)表示B等級(jí)的扇形圓心角α的度數(shù)是多少?

3)若該中學(xué)初三年級(jí)共有800名學(xué)生,請(qǐng)你估計(jì)學(xué)習(xí)時(shí)間為AB等級(jí)的學(xué)生共有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“每天鍛煉一小時(shí),健康生活一輩子”.為了選拔“陽(yáng)光大課間”領(lǐng)操員,學(xué)校組織初中三個(gè)年級(jí)推選出來的15名領(lǐng)操員進(jìn)行比賽,成績(jī)?nèi)缦卤恚?/span>

成績(jī)/分

7

8

9

10

人數(shù)/人

2

5

4

4

(1)這組數(shù)據(jù)的眾數(shù)是多少,中位數(shù)是多少.

(2)已知獲得2018年四川省南充市的選手中,七、八、九年級(jí)分別有1人、2人、1人,學(xué)校準(zhǔn)備從中隨機(jī)抽取兩人領(lǐng)操,求恰好抽到八年級(jí)兩名領(lǐng)操員的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】市化工材料經(jīng)銷公司購(gòu)進(jìn)一種化工原料若干千克,價(jià)格為每千克30元.物價(jià)部門規(guī)定其銷售單價(jià)不高于每千克60元,不低于每千克30元.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):日銷售量(千克)是銷售單價(jià)(元)的一次函數(shù),且當(dāng)=40時(shí),=120;=50時(shí),=100.在銷售過程中,每天還要支付其他費(fèi)用500元.

(1)求出的函數(shù)關(guān)系式,并寫出自變量的取值范圍.

(2)求該公司銷售該原料日獲利(元)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式.

(3)當(dāng)銷售單價(jià)為多少元時(shí),該公司日獲利最大?最大獲利是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c經(jīng)過A、BC三點(diǎn),已知點(diǎn)A(﹣30),B0,3),C1,0).

1)求此拋物線的解析式;

2)點(diǎn)P是直線AB上方的拋物線上一動(dòng)點(diǎn),(不與點(diǎn)A、B重合),過點(diǎn)Px軸的垂線,垂足為F,交直線AB于點(diǎn)E,作PDAB于點(diǎn)D.動(dòng)點(diǎn)P在什么位置時(shí),△PDE的周長(zhǎng)最大,求出此時(shí)P點(diǎn)的坐標(biāo);

3)在直線上是否存在點(diǎn)M,使得∠MAC=2MCA,若存在,求出M點(diǎn)坐標(biāo).若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案