【題目】在直線上順次取A,B,C三點(diǎn),分別以AB,BC為邊長(zhǎng)在直線的同側(cè)作正三角形,作得兩個(gè)正三角形的另一頂點(diǎn)分別為D,E.
(1)如圖①,連結(jié)CD,AE,求證:CD=AE;
(2)如圖②,若AB=1,BC=2,求DE的長(zhǎng);
(3)如圖③,將圖②中的正三角形BEC繞B點(diǎn)作適當(dāng)?shù)男D(zhuǎn),連結(jié)AE,若有DE2+BE2=AE2 , 試求∠DEB的度數(shù).
【答案】
(1)證明:如圖①中,∵△ABD和△ECB都是等邊三角形,
∴AD=AB=BD,BC=BE=EC,∠ABD=∠EBC=60°,
∴∠ABE=∠DBC,
在△ABE和△DBC中,
,
∴△ABE≌△DBC,
∴AE=DC.
(2)解:如圖②中,取BE中點(diǎn)F,連接DF.
∵BD=AB=1,BE=BC=2,∠ABD=∠EBC=60°,
∴BF=EF=1=BD,∠DBF=60°,
∴△DBF是等邊三角形,
∴DF=BF=EF,∠DFB=60°,
∵∠BFD=∠FED+∠FDE,
∴∠FDE=∠FED=30°
∴∠EDB=180°﹣DEB∠DBE﹣∠DEB=90°,
∴DE= = = .
(3)解:如圖③中,連接DC,
∵△ABD和△ECB都是等邊三角形,
∴AD=AB=BD,BC=BE=EC,∠ABD=∠EBC=60°,
∴∠ABE=∠DBC,
在△ABE和△DBC中,
,
∴△ABE≌△DBC,
∴AE=DC.
∵DE2+BE2=AE2,BE=CE,
∴DE2+CE2=CD2,
∴∠DEC=90°,
∵∠BEC=60°,
∴∠DEB=∠DEC﹣∠BEC=30°.
【解析】(1)欲證明CD=AE,只要證明△ABE≌△DBC即可.(2)如圖②中,取BE中點(diǎn)F,連接DF,首先證明△BDE是直角三角形,再利用勾股定理即可.(3)如圖③中,連接DC,先利用勾股定理的逆定理證明△DEC是直角三角形,得∠DEC=90°即可解決問題.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等邊三角形的性質(zhì)的相關(guān)知識(shí),掌握等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°,以及對(duì)勾股定理的概念的理解,了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C,D,E三點(diǎn)在同一條直線上,連接BD,BE.以下四個(gè)結(jié)論:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)﹣CD2 , 其中結(jié)論正確的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】快、慢兩車分別從相距180千米的甲、乙兩地同時(shí)出發(fā),沿同一路線勻速行駛,相向而行,快車到達(dá)乙地停留一段時(shí)間后,按原路原速返回甲地.慢車到達(dá)甲地比快車到達(dá)甲地早小時(shí),慢車速度是快車速度的一半,快、慢兩車到達(dá)甲地后停止行駛,兩車距各自出發(fā)地的路程y(千米)與所用時(shí)間x(小時(shí))的函數(shù)圖象如圖所示,請(qǐng)結(jié)合圖象信息解答下列問題:
(1)請(qǐng)直接寫出快、慢兩車的速度;
(2)求快車返回過程中y(千米)與x(小時(shí))的函數(shù)關(guān)系式;
(3)兩車出發(fā)后經(jīng)過多長(zhǎng)時(shí)間相距90千米的路程?直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,則三個(gè)結(jié)論:①AS=AR;②QP∥AR;③△BPR≌△QPS中( )
A.全部正確
B.僅①和③正確
C.僅①正確
D.僅①和②正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,可以單獨(dú)用正三角形、正方形或正六邊形鑲嵌平面.
如果我們要同時(shí)用兩種不同的正多邊形鑲嵌平面,可能設(shè)計(jì)出幾種不同的組合方案?
問題解決:
猜想1:是否可以同時(shí)用正方形、正八邊形兩種正多邊形組合進(jìn)行平面鑲嵌?
驗(yàn)證1:在鑲嵌平面時(shí),設(shè)圍繞某一點(diǎn)有x個(gè)正方形和y個(gè)正八邊形的內(nèi)角可以拼成一個(gè)周角.根據(jù)題意,可得方程:90x+ y=360,整理得:2x+3y=8,
我們可以找到方程的正整數(shù)解為 .
結(jié)論1:鑲嵌平面時(shí),在一個(gè)頂點(diǎn)周圍圍繞著1個(gè)正方形和2個(gè)正八邊形的內(nèi)角可以拼成一個(gè)周角,所以同時(shí)用正方形和正八邊形兩種正多邊形組合可以進(jìn)行平面鑲嵌.
猜想2:是否可以同時(shí)用正三角形和正六邊形兩種正多邊形組合進(jìn)行平面鑲嵌?若能,請(qǐng)按照上述方法進(jìn)行驗(yàn)證,并寫出所有可能的方案;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在x軸的上方,直角∠BOA繞原點(diǎn)O按順時(shí)針方向旋轉(zhuǎn),若∠BOA的兩邊分別與函數(shù)、的圖象交于B、A兩點(diǎn),則∠OAB的大小的變化趨勢(shì)為( )
A.逐漸變小 B.逐漸變大 C.時(shí)大時(shí)小 D.保持不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老師在計(jì)算學(xué)期平均分的時(shí)候按照如下標(biāo)準(zhǔn),作業(yè)占10%,測(cè)驗(yàn)占20%,期中考試占30%,期末考試占40%,小麗的成績(jī)?nèi)绫硭,則小麗的平均分是________分.
學(xué)生 | 作業(yè) | 測(cè)驗(yàn) | 期中考試 | 期未考試 |
小麗 | 80 | 75 | 70 | 90 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,⊙O的半徑為r(r>0),若點(diǎn)P′在射線OP上,滿足OP′OP=,則稱點(diǎn)P′是點(diǎn)P關(guān)于⊙O的“反演點(diǎn)”.
如圖2,⊙O的半徑為4,點(diǎn)B在⊙O上,∠BOA=60°,OA=8,若點(diǎn)A′,B′分別是點(diǎn)A,B關(guān)于⊙O的反演點(diǎn),求A′B′的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com