【題目】如圖,AB為⊙O的直徑,且AB=4,點(diǎn)C是弧AB上的一動(dòng)點(diǎn)(不與A,B重合),過點(diǎn)B作⊙O的切線交AC的延長線于點(diǎn)D,點(diǎn)E是BD的中點(diǎn),連接EC.
(1)若BD=8,求線段AC的長度;
(2)求證:EC是⊙O的切線;
(3)當(dāng)∠D=30°時(shí),求圖中陰影部分面積.
【答案】(1)AC=;(2)見解析;(3)4﹣
【解析】
(1)連接BC,如圖,連接BC,根據(jù)切線的性質(zhì)得到∠ABD=90°,根據(jù)勾股定理得到AD==4,根據(jù)三角形的面積公式和勾股定理即可得到結(jié)論;
(2)連接OC,OE,由E是BD的中點(diǎn),可得CE=BE,證明△OCE≌△OBE,得∠OCE=∠OBE=90°,則結(jié)論得證;
(3)陰影部分的面積即為四邊形OBED的面積減去扇形COB的面積.
解:(1)如圖,連接BC,
∵BD是⊙O的切線,
∴∠ABD=90°,
∵AB=4,BD=8,
∴AD==4,
∵AB為⊙O的直徑,
∴BC⊥AD,
∴BC===,
∴AC==;
(2)連接OC,OE,
∵AB為⊙O的直徑,
∴∠ACB=90°,
在Rt△BDC中,
∵BE=ED,
∴DE=EC=BE,
∵OC=OB,OE=OE,
∴△OCE≌△OBE(SSS),
∴∠OCE=∠OBE,
∵BD是⊙O的切線,
∴∠ABD=90°,
∴∠OCE=∠ABD=90°,
∵OC為半徑,
∴EC是⊙O的切線;
(3)∵OA=OB,BE=DE,
∴AD∥OE,
∴∠D=∠OEB,
∵∠D=30°,
∴∠OEB=30°,∠EOB=60°,
∴∠BOC=120°,
∵AB=4,
∴OB=2,
∴BE=2.
∴四邊形OBEC的面積為2S△OBE=2××2×2=4,
∴陰影部分面積為S四邊形OBEC﹣S扇形BOC=4﹣=4﹣.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在新冠病毒疫情防控期間,某校“停課不停學(xué)”,開展了網(wǎng)絡(luò)教學(xué).為了解九年級學(xué)生在網(wǎng)絡(luò)學(xué)習(xí)期間英語學(xué)科和數(shù)學(xué)學(xué)科的學(xué)習(xí)情況,復(fù)課后從九年級學(xué)生中隨機(jī)抽取60名學(xué)生進(jìn)行了測試,獲得了他們成績(百分制)的數(shù)據(jù),通過對成績數(shù)據(jù)的整理、描述和分析,得到了如下部分信息.
①英語成績的頻數(shù)分布直方圖如圖:
(數(shù)據(jù)分成6組:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100.)
②英語和數(shù)學(xué)成績的平均數(shù)、中位數(shù)、眾數(shù)如表:
學(xué)科 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
英語 | 74.8 | m | 83 |
數(shù)學(xué) | 72.2 | 70 | 81 |
③英語成績在70≤x<80這一組的數(shù)據(jù)是:
70 71 72 73 73 73 74 76 77 77 77 78 79 79
根據(jù)以上信息,回答下列問題:
(1)表中m的值是 .
(2)在此次測試中,李麗的英語成績?yōu)?/span>74分,數(shù)學(xué)成績?yōu)?/span>71分,該名學(xué)生成績排名更靠前的學(xué)科是 .(填“英語”或“數(shù)學(xué)”),理由是 .
(3)若該校九年級共有500名學(xué)生,請你估計(jì)英語成績超過77.5分的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】疫情防控,我們一直在堅(jiān)守.某居委會(huì)組織兩個(gè)檢查組,分別對“居民體溫”和“居民安全出行”的情況進(jìn)行抽查.若這兩個(gè)檢查組在轄區(qū)內(nèi)的某三個(gè)校區(qū)中各自隨機(jī)抽取一個(gè)小區(qū)進(jìn)行檢查,則他們恰好抽到同一個(gè)小區(qū)的概率是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富居民的文化生活.某社區(qū)開展跳舞、繪畫、游泳、唱歌等活動(dòng)來讓居民娛樂.為了解居民對跳舞、繪畫、游泳、唱歌這四種活動(dòng)(以下分別用,,,表示這四種不同活動(dòng))的喜愛情況,在“五一”勞動(dòng)節(jié)期間對某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅統(tǒng)計(jì)圖.請根據(jù)以上信息回答:
(1)本次參加抽樣調(diào)查的居民有多少人?
(2)將不完整的條形圖補(bǔ)充完整;
(3)若居民區(qū)有8000人,請估計(jì)愛唱歌的人數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,AD=,在邊CD上有一點(diǎn)E,使EB平分∠AEC.若P為BC邊上一點(diǎn),且BP=2CP,連接EP并延長交AB的延長線于F.給出以下五個(gè)結(jié)論:
①點(diǎn)B平分線段AF;②PF=DE;③∠BEF=∠FEC;④S矩形ABCD=4S△BPF;⑤△AEB是正三角形.
其中正確結(jié)論的序號是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,是邊上的一點(diǎn),是的中點(diǎn),過點(diǎn)作的平行線交的延長線于點(diǎn),且,連接.
(1)求證:是的中點(diǎn);
(2)如果,試判斷四邊形的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張琪和爸爸到英雄山廣場運(yùn)動(dòng),兩人同時(shí)從家出發(fā),沿相同路線前行,途中爸爸有事返回,張琪繼續(xù)前行5分鐘后也原路返回,兩人恰好同時(shí)到家張琪和爸爸在整個(gè)運(yùn)動(dòng)過程中離家的路點(diǎn)y1(米),y2(米)與運(yùn)動(dòng)時(shí)間x(分)之間的函數(shù)關(guān)系如圖所示.求張琪開始返回時(shí)與爸爸相距______米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】線段AB、CD在平面直角坐標(biāo)系中位置如圖所示,O為坐標(biāo)原點(diǎn).若線段AB上一點(diǎn)P的坐標(biāo)為(a、b),則直線OP與線段CD的交點(diǎn)坐標(biāo)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(―3,6)、B(―9,一3),以原點(diǎn)O為位似中心,相似比為,把△ABO縮小,則點(diǎn)A的對應(yīng)點(diǎn)A′的坐標(biāo)是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com