【題目】如圖,AB是⊙O的直徑,且點(diǎn)C為⊙O上的一點(diǎn),∠BAC=30°,MOA上一點(diǎn),過MAB的垂線交AC于點(diǎn)N,交BC的延長線于點(diǎn)E,直線CFEN于點(diǎn)F,且∠ECF=E

1證明:CF是⊙O的切線;

2設(shè)⊙O的半徑為1,且AC=CE,求MO的長.

【答案】(1)答案見解析;(2)

【解析】

1)要證CF為⊙O的切線,只要證明∠OCF=90°即可;

2)根據(jù)三角函數(shù)求得AC的長,從而可求得BE的長,再利用三角函數(shù)可求出MB的值,從而可得到MO的長.

1)如圖,連接OC

AB是⊙O的直徑,∴∠ACB=90°.

∵∠BAC=30°,∴∠ABC=60°;

RtEMB中,∵∠E+∠MBE=90°,∴∠E=30°;

∵∠E=ECF,∴∠ECF=30°,∴∠ECF+∠OCB=90°;

∵∠ECF+∠OCB+∠OCF=180°,∴∠OCF=90°,CF為⊙O的切線;

2)在RtACB中,∠A=30°,ACB=90°,

AC=ABcos30°=,BC=ABsin30°=1;

AC=CEBE=BC+CE=1+

RtEMB中,∠E=30°,BME=90°,

MB=BEsin30°=,

MO=MBOB=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E,F分別是矩形ABCD的邊ADAB上的點(diǎn),若EF=EC,且EF⊥EC

1)求證:AE=DC;

2)已知DC=,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市正大力發(fā)展綠色農(nóng)產(chǎn)品,有一種有機(jī)水果A特別受歡迎,某超市以市場(chǎng)價(jià)格10/千克在該市收購了6000千克A水果,立即將其冷藏,請(qǐng)根據(jù)下列信息解決問題:

①水果A的市場(chǎng)價(jià)格每天每千克上漲0.1元;

②平均每天有10千克的該水果損壞,不能出售;

③每天的冷藏費(fèi)用為300元;

④該水果最多保存110天.

(1)若將這批A水果存放天后一次性出售,則天后這批水果的銷售單價(jià)為_____元;可以出售的完好水果還有_____千克;

(2)將這批A水果存放多少天后一次性出售所得利潤為9600元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的圖像經(jīng)過點(diǎn),且它的頂點(diǎn)的橫坐標(biāo)為-1,設(shè)拋物線與軸交于兩點(diǎn).

1)求拋物線的解析式;

2)求兩點(diǎn)的坐標(biāo);

3)設(shè)軸交于點(diǎn),連接,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小陽在如圖所示的扇形舞臺(tái)上沿O-M-N勻速行走,他從點(diǎn)O出發(fā),沿箭頭所示的方向經(jīng)過點(diǎn)M再走到點(diǎn)N,共用時(shí)70秒有一臺(tái)攝像機(jī)選擇了一個(gè)固定的位置記錄了小陽的走路過程,設(shè)小陽走路的時(shí)間為t單位:秒,他與攝像機(jī)的距離為y單位:米,表示y與t的函數(shù)關(guān)系的圖象大致如圖,則這個(gè)固定位置可能是圖中的

A點(diǎn)Q B點(diǎn)P C點(diǎn)M D點(diǎn)N

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.如圖,在RTABC中,∠C=90°,BC=8,AC=6,動(dòng)點(diǎn)QB點(diǎn)開始在線段BA上以每秒2個(gè)單位長度的速度向點(diǎn)A移動(dòng),同時(shí)點(diǎn)PA點(diǎn)開始在線段AC上以每秒1個(gè)單位長度的速度向點(diǎn)C移動(dòng).當(dāng)一點(diǎn)停止運(yùn)動(dòng),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)Q,P移動(dòng)的時(shí)間為t秒.當(dāng)t=____________ 秒時(shí)APQABC相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,現(xiàn)在有一足夠大的直角三角板,它的直角頂點(diǎn)DBC邊上一點(diǎn),另兩條直角邊分別交AB、AC于點(diǎn)EF.

1)如圖1,若DEAB,DFAC,求證:四邊形AEDF是矩形

2)在(1)條件下,若點(diǎn)D在∠BAC的角平分線上,試判斷此時(shí)四邊形AEDF形狀,并說明理由;

3)若點(diǎn)D在∠BAC的角平分線上,將直角三角板繞點(diǎn)D旋轉(zhuǎn)一定的角度,使得直角三角板的兩條邊與兩條直角邊分別交于點(diǎn)EF(如圖2),試證明.(嘗試作輔助線)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交x軸于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)).

1)求點(diǎn)A,B的坐標(biāo),并根據(jù)該函數(shù)圖象寫出y0時(shí)x的取值范圍;

2)把點(diǎn)B向上平移m個(gè)單位得點(diǎn)B1.若點(diǎn)B1向左平移n個(gè)單位,將與該二次函數(shù)圖象上的點(diǎn)B2重合;若點(diǎn)B1向左平移(n6)個(gè)單位,將與該二次函數(shù)圖象上的點(diǎn)B3重合.已知m0,n0,求mn的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖①,在等邊三角形ABC內(nèi),點(diǎn)P到頂點(diǎn)A,BC的距離分別是3,4,5,則∠APB=  ,由于,PB,PC不在同一三角形中,為了解決本題,我們可以將△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60o處,連接,此時(shí),   ,就可以利用全等的知識(shí),進(jìn)而將三條線段的長度轉(zhuǎn)化到一個(gè)三角形中,從而求出∠APB的度數(shù);

2)請(qǐng)你利用第(1)題的解答方法解答:如圖②,△ABC中,D、EBC上的點(diǎn),且,求證:;

3)如圖③,在△ABC中,,若以BD、DE、EC為邊的三角形是直角三角形時(shí),求BE的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案