【題目】將下列各數(shù)填入相應(yīng)的集合中.

—7 , 0, ,—22, -2.55555…, 3.01, +9 ,4.020020002…,+10﹪, -2.

無(wú)理數(shù)集合:{ }; 負(fù)有理數(shù)集合:{ };

正分?jǐn)?shù)集合:{ }; 非負(fù)整數(shù)集合:{ };

【答案】無(wú)理數(shù)集合:{ 4.020020002…,-2 };負(fù)有理數(shù)集合:{ —7 ,—22 , -2.55555… };正分?jǐn)?shù)集合:{ ,3.01,+10﹪, }; 非負(fù)整數(shù)集合:{ 0, +9 }.

【解析】

根據(jù)數(shù)集的分類直接分類.

根據(jù)數(shù)的分類直接把題目中數(shù)據(jù)進(jìn)行分類,無(wú)理數(shù)集合:{ 4.020020002…,-2 };負(fù)有理數(shù)集合:{ —7 ,—22 , -2.55555… };正分?jǐn)?shù)集合:{ ,3.01,+10﹪, }; 非負(fù)整數(shù)集合:{ 0, +9 }.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值: ,其中x=2sin60°﹣( 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線AB,CD相交于點(diǎn)O,OE平分∠AOD,F(xiàn)O⊥AB,垂足為O,∠BOD=∠DOE.

(1)求BOF的度數(shù);

(2)請(qǐng)寫出圖中與BOD相等的所有的角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD位于平面直角坐標(biāo)系的第一象限,B、C在x軸上A點(diǎn)函數(shù)上,且AB∥CD∥y軸,AD∥x軸,B(1,0)、C(3,0)。

試判斷四邊形ABCD的形狀

⑵如圖若點(diǎn)P是線段BD上一點(diǎn)PEBC于E,M是PD的中點(diǎn),連EM、AM。

求證:AM=EM

⑶在圖中,連結(jié)AE交BD于N,則下列兩個(gè)結(jié)論:

值不變;②的值不變。其中有且僅有一個(gè)是正確的,請(qǐng)選擇正確的結(jié)論證明并求其值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】世界杯比賽中,根據(jù)場(chǎng)上攻守形勢(shì),守門員會(huì)在門前來(lái)回跑動(dòng),如果以球門線為基準(zhǔn),向前跑記作正數(shù),返回則記作負(fù)數(shù),一段時(shí)間內(nèi),某守門員的跑動(dòng)情況記錄如下(單位:m):+10,﹣2,+5,﹣6,+12,﹣9,+4,﹣14.(假定開(kāi)始計(jì)時(shí)時(shí),守門員正好在球門線上)

(1)守門員最后是否回到球門線上?

(2)守門員離開(kāi)球門線的最遠(yuǎn)距離達(dá)多少米?

(3)如果守門員離開(kāi)球門線的距離超過(guò)10米(不包括10米),則對(duì)方球員挑射極可能造成破門.請(qǐng)問(wèn)在這一時(shí)間段內(nèi),對(duì)方球員有幾次挑射破門的機(jī)會(huì)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校部分團(tuán)員參加社會(huì)公益活動(dòng),準(zhǔn)備購(gòu)進(jìn)一批許愿瓶進(jìn)行銷售,并將所得利 潤(rùn)捐助給慈善機(jī)構(gòu).根據(jù)市場(chǎng)調(diào)查,這種許愿瓶一段時(shí)間內(nèi)的銷售量y (單位:個(gè))與
銷售單價(jià)x(單位:元/個(gè))之間的對(duì)應(yīng)關(guān)系如圖所示:

(1)y與x之間的函數(shù)關(guān)系是
(2)若許愿瓶的進(jìn)價(jià)為6元/個(gè),按照上述市場(chǎng)調(diào)查的銷售規(guī)律,求銷售利潤(rùn)w(單位:元)與銷售單價(jià)x(單位:元/個(gè))之間的函數(shù)關(guān)系式;
(3)在(2)問(wèn)的條件下,若許愿瓶的進(jìn)貨成本不超過(guò)900元,要想獲得最大利潤(rùn),試確定這種許愿瓶的銷售單價(jià),并求出此時(shí)的最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)軸是一個(gè)非常重要的數(shù)學(xué)工具,它使數(shù)和數(shù)軸上的點(diǎn)建立對(duì)應(yīng)關(guān)系,解釋了數(shù)與點(diǎn)之間的內(nèi)在聯(lián)系,它是“數(shù)形結(jié)合”的基礎(chǔ)。

如圖,數(shù)軸上有三個(gè)點(diǎn)A、B、C,它們可以沿著數(shù)軸左右移動(dòng),請(qǐng)回答

(1)將點(diǎn)B向右移動(dòng)4個(gè)單位長(zhǎng)度后到達(dá)點(diǎn)D,點(diǎn)D表示的數(shù)是 ,A、D兩點(diǎn)之間的距離是 ;

(2)移動(dòng)點(diǎn)A到達(dá)E點(diǎn),使B、C、E三點(diǎn)的其中某一點(diǎn)到其它兩點(diǎn)的距離相等,寫出點(diǎn)E在數(shù)軸上對(duì)應(yīng)的數(shù)值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,解答下面的問(wèn)題:

我們知道方程有無(wú)數(shù)個(gè)解,但在實(shí)際生活中我們往往只需求出其

正整數(shù)解.

例:由,得:,(xy為正整數(shù))

,則有.又為正整數(shù),則為正整數(shù).由2與3互質(zhì),可知:x為3的倍數(shù),從而x=3,代入∴2x+3y=12的正整數(shù)解為

問(wèn)題:

(1)請(qǐng)你寫出方程的一組正整數(shù)解:      .

(2)若為自然數(shù),則滿足條件的x值為      .

(3)七年級(jí)某班為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的學(xué)生,購(gòu)買了單價(jià)為3元的筆記本與單價(jià)為5元的鋼筆兩種獎(jiǎng)品,共花費(fèi)35元,問(wèn)有幾種購(gòu)買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,借助直角三角板可以找到一元二次方程的實(shí)數(shù)根,比如對(duì)于方程 ,操作步驟是:
第一步:根據(jù)方程系數(shù)特征,確定一對(duì)固定點(diǎn)A(0,1),B(5,2);
第二步:在坐標(biāo)平面中移動(dòng)一個(gè)直角三角板,使一條直角邊恒過(guò)點(diǎn)A,另一條直角邊恒過(guò)點(diǎn)B;
第三步:在移動(dòng)過(guò)程中,當(dāng)三角板的直角頂點(diǎn)落在x軸上點(diǎn)C處時(shí),點(diǎn)C 的橫坐標(biāo)m即為該方程的一個(gè)實(shí)數(shù)根(如圖1)
第四步:調(diào)整三角板直角頂點(diǎn)的位置,當(dāng)它落在x軸上另一點(diǎn)D處時(shí),點(diǎn)D 的橫坐標(biāo)為n即為該方程的另一個(gè)實(shí)數(shù)根。

(1)在圖2 中,按照“第四步“的操作方法作出點(diǎn)D(請(qǐng)保留作出點(diǎn)D時(shí)直角三角板兩條直角邊的痕跡)
(2)結(jié)合圖1,請(qǐng)證明“第三步”操作得到的m就是方程 的一個(gè)實(shí)數(shù)根;
(3)上述操作的關(guān)鍵是確定兩個(gè)固定點(diǎn)的位置,若要以此方法找到一元二次方程 的實(shí)數(shù)根,請(qǐng)你直接寫出一對(duì)固定點(diǎn)的坐標(biāo);
(4)實(shí)際上,(3)中的固定點(diǎn)有無(wú)數(shù)對(duì),一般地,當(dāng) , , , 與a,b,c之間滿足怎樣的關(guān)系時(shí),點(diǎn)P( , ),Q( )就是符合要求的一對(duì)固定點(diǎn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案