如圖,在⊙O中,直徑AB與弦CD相交于點(diǎn)P,∠CAB=40°,∠APD=65°.
(1)求∠B的大小;
(2)已知AD=6,求圓心O到BD的距離.

【答案】分析:(1)根據(jù)圓周定理以及三角形外角求出即可;
(2)利用三角形中位的性質(zhì)得出EO=AD,即可得出答案.
解答:解:(1)∵∠APD=∠C+∠CAB,
∴∠C=65°-40°=25°,
∴∠B=∠C=25°;

(2)作OE⊥BD于E,
則DE=BE,
又∵AO=BO,
,
圓心O到BD的距離為3.
點(diǎn)評(píng):此題主要考查了圓周角定理以及三角形中位線定理,根據(jù)已知得出EO=AD是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在⊙O中,直徑AB為10cm,弦AC為6cm,∠ACB的平分線交⊙O于D,則BC=
 
cm,∠ABD=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在⊙O中,直徑CD的長(zhǎng)度為10cm,AB是弦,且AB⊥CD于M,OM=3cm,求弦AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在⊙O中,直徑AB與弦CD垂直,垂足為E,連接AC,將△ACE沿AC翻折得到△ACF,直線F精英家教網(wǎng)C與直線AB相交于點(diǎn)G.
(1)證明:直線FC與⊙O相切;
(2)若OB=BG,求證:四邊形OCBD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•百色)如圖,在⊙O中,直徑CD垂直于弦AB,若∠C=25°,則∠ABO的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•朝陽區(qū)二模)如圖,在⊙O中,直徑AB⊥弦CD于點(diǎn)H,E是⊙O上的點(diǎn),若∠BEC=25°,則∠BAD的度數(shù)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案