下列方程中,沒有實(shí)數(shù)根的是( )
A.x2-x-1=0
B.x2+1=0
C.-x2+x+2=0
D.x2=-3
【答案】分析:對(duì)于A、B、C選項(xiàng)先計(jì)算出△,然后根據(jù)△的意義判斷方程根的情況;對(duì)于D選項(xiàng)給的方程先變形為一般式,再計(jì)算△,然后根據(jù)△的意義判斷方程根的情況.
解答:解:A、因?yàn)椤?(-1)2-4×1×(-1)=5>0,則此方程有兩個(gè)不相等的實(shí)數(shù)根,所以A選項(xiàng)錯(cuò)誤;
B、因?yàn)椤?02-4×1×1=-4<0,則此方程沒有實(shí)數(shù)根,所以B選項(xiàng)正確;
C、因?yàn)椤?12-4×(-1)×2=9>0,則此方程有兩個(gè)不相等的實(shí)數(shù)根,所以C選項(xiàng)錯(cuò)誤;
D、方程變形為x2+3x=0,因?yàn)椤?32-4×1×0=9>0,則此方程有兩個(gè)不相等的實(shí)數(shù)根,所以D選項(xiàng)錯(cuò)誤.
故選B.
點(diǎn)評(píng):本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒有實(shí)數(shù)根.