精英家教網 > 初中數學 > 題目詳情

【題目】解不等式(組):

(Ⅰ)解不等式:

(Ⅱ)解不等式組

請結合題意填空,完成本題的解答;

1)解不等式,得:   

2)解不等式,得:   ;

3)把不等式的解集在如圖數軸上表示出來;

4)原不等式組的解集為   

【答案】(Ⅰ)x1;(Ⅱ)(1x3,(2x≥﹣2,(3)把不等式的解集在如圖數軸上表示出來見解析;(4)﹣2x3,

【解析】

(Ⅰ)先去分母,再移項,合并同類項即可求解;
(Ⅱ)分別求得①, ②的解集,再在數軸上表示,最后根據數軸可得到解集.

(Ⅰ)去分母得:

去括號得:,

移項得:,

合并同類項得:,

系數化為1,得:

(Ⅱ),

1)解不等式①得:,

2)解不等式②得:

3)把不等式①和②的解集在如圖數軸上表示出來:

4)原不等式組的解集是:,

故答案為:,

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】四邊形ABCD為菱形,點E在邊AD上,點F在邊CD

(1) AE=CF,求證:EB=BF

(2) AD=4DE=CF,且EFB為等邊三角形,求四邊形DEBF的面積

(3) 若∠DAB=60°,點H在邊BC上,且BH=HC=2.若∠DFA=2HAB,直接寫出CF的長

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線x軸交于點A、B,與y軸交于點C,直線y=x+4經過點A、C,點P為拋物線上位于直線AC上方的一個動點.

(1)求拋物線的表達式;

(2)如圖,當CP//AO時,求∠PAC的正切值;

(3)當以AP、AO為鄰邊的平行四邊形第四個頂點恰好也在拋物線上時,求出此時點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校七年級共有800名學生,準備調查他們對低碳知識的了解程度.

(1)在確定調查方式時,團委設計了以下三種方案:

方案一:調查七年級部分女生;

方案二:調查七年級部分男生;

方案三:到七年級每個班去隨機調查一定數量的學生.

請問其中最具有代表性的一個方案是   ;

(2)團委采用了最具有代表性的調查方案,并用收集到的數據繪制出兩幅不完整的統(tǒng)計圖(如圖①、圖②所示),請你根據圖中信息,將兩個統(tǒng)計圖補充完整;

(3)在扇形統(tǒng)計圖中,比較了解所在扇形的圓心角的度數是   

(4)請你估計該校七年級約有   名學生比較了解低碳知識.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知圖甲是一個長為,寬為的長方形,沿圖甲中虛線用剪刀均勻分成四小塊長方形,然后按圖乙的形狀拼成一個正方形.

1)求圖乙中陰影部分正方形的邊長(用含字母,的整式表示);

2)請用兩種不同的方法求圖乙中陰影部分的面積.

3)觀察圖乙,并結合(2)中的結論,寫出下列三個整式:,之間的等量關系;

4)根據(3)題中的等量關系,解決如下問題:若,,求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在邊長為的正方形四個角上,分別剪去大小相等的等腰直角三角形,當三角形的直角邊由小變大時,陰影部分的面積也隨之發(fā)生變化,它們的變化情況如下:

三角形的直角邊長/

1

2

3

4

5

6

7

8

9

10

陰影部分的面積/

398

392

382

368

350

302

272

200

(1)在這個變化過程中,自變量、因變量各是什么?

(2)請將上述表格補充完整;

(3)當等腰直角三角形的直角邊長由增加到時,陰影部分的面積是怎樣變化的?

(4)設等腰直角三角形的直角邊長為,圖中陰影部分的面積為,寫出的關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線y=﹣x2+bx+c上部分點的橫坐標x,縱坐標y的對應值如下表所示:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

從上表可知,下列說法中,錯誤的是( )

A. 拋物線于x軸的一個交點坐標為(﹣2,0)

B. 拋物線與y軸的交點坐標為(0,6)

C. 拋物線的對稱軸是直線x=0

D. 拋物線在對稱軸左側部分是上升的

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在如圖所示的5×5的正方形網格中,每個小正方形的邊長均為1,按下列要求畫圖或填空;

1)畫一條線段AB使它的另一端點B落在格點上(即小正方形的頂點),且AB=2;

2)以(1)中的AB為邊畫一個等腰△ABC,使點C落在格點上,且另兩邊的長都是無理數;

3)△ABC的周長為      ,面積為      

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】按下圖方式擺放餐桌和椅子,

11張長方形餐桌可坐4人,2張長方形餐桌拼在一起可坐______人.

2)按照上圖的方式繼續(xù)排列餐桌,完成下表.

桌子張數

3

4

5

n

可坐人數

______

______

______

______

3)一家餐廳有40張這樣的長方形餐桌,某用餐單位要求餐廳按照上圖方式,每8張長方形餐桌拼成1張大桌子,則該餐廳此時能容納多少人用餐?

查看答案和解析>>

同步練習冊答案