【題目】先填寫表,通過觀察后再回答問題:

a

0.0001

0.01

1

100

10000

0.01

x

1

y

100

1)表格中x   ,y   ;

2)從表格中探究a數(shù)位的規(guī)律,并利用這個規(guī)律解決下面兩個問題:

①已知≈3.16,則   ;

②已知8.973,若897.3,用含m的代數(shù)式表示b,則b   ;

3)試比較a的大小.

【答案】10.1;10;(2)①31.6;②10000m(3)見詳解.

【解析】

1)根據(jù)算術(shù)平方根的性質(zhì),求出xy的值即可;

2)觀察表格得到規(guī)律,即被開方數(shù)每擴大或縮小100倍,則算術(shù)平方根擴大或縮小10倍:①被開發(fā)數(shù)擴大100倍,算術(shù)平方根擴大10倍;

②算術(shù)平方根擴大100倍,則被開方數(shù)擴大10000倍.

3)分類討論a的范圍,比較大小即可.

解:(1x0.1y10;

2)①根據(jù)題意得:被開發(fā)數(shù)擴大100倍,算術(shù)平方根擴大10倍,

≈31.6;

②根據(jù)題意得:算術(shù)平方根擴大100倍,則被開方數(shù)擴大10000倍,

b10000m;

3)當(dāng)a01時,a;

當(dāng)0a1時,a;

當(dāng)a1時,a,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點D在雙曲線上,AD垂直x軸,垂足為A,點CAD上,CB平行于x軸交雙曲線于點B,直線ABy軸交于點F,已知AC:AD=1:3,點C的坐標(biāo)為(3,2).

(1)求該雙曲線的解析式;

(2)求△OFA的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,(1)寫出△ABC的各頂點坐標(biāo),寫出△ABC關(guān)于X軸對稱的△A2B2C2的各點坐標(biāo).

2)畫出△ABC關(guān)于Y軸對稱的△A1B1C1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCO的對角線BOx 軸上,若正方形ABCO的邊長為,點Bx負半軸上,反比例函數(shù)的圖象經(jīng)過C點.

1)求該反比例函數(shù)的解析式;

2)當(dāng)函數(shù)值-2時,請直接寫出自變量x的取值范圍;

3)若點P是反比例函數(shù)上的一點,且PBO的面積恰好等于正方形ABCO的面積,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在RtABC中,∠A=90°,AB=AC,點D,E分別在邊ABAC上,AD=AE,連接DC,點MP,N分別為DEDC,BC的中點.

(1)觀察猜想

1中,線段PMPN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;

(2)探究證明

ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BDCE,判斷PMN的形狀,并說明理由;

(3)拓展延伸

ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,EAC上一點,且AE=BC,過點AADCA,垂足為A,且AD=ACAB、DE交于點F試判斷線段ABDE的數(shù)量關(guān)系和位置關(guān)系,并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,CD為⊙O的直徑,AD,AB,EC分別與⊙O相切于點D,E,C(ADBC),連接DE并延長與與直線BC相交于點P,連接OB.

(1)求證:BC=BP;

(2)若DEOB=40,求ADBC的值;

(3)在(2)條件下,若SADE:SPBE=16:25,求SADESPBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,CAB上一點,點DE分別在AB兩側(cè),ADBE,且ADBC,BEAC

1)求證:CDCE;

2)連接DE,交AB于點F,猜想BEF的形狀,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB是⊙O的直徑,弦CDABH,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AGCDK

1)如圖1,求證:KE=GE;

2)如圖2,連接CABG,若∠FGB=ACH,求證:CAFE;

3)如圖3,在(2)的條件下,連接CGAB于點N,若sinE=,AK=,求CN的長.

查看答案和解析>>

同步練習(xí)冊答案