【題目】如圖,一艘輪船從位于燈塔C的北偏東方向,距離燈塔60海里的小島A出發(fā),沿正南方向航行一段時間后,到達(dá)位于燈塔C的南偏東方向上的B處,這時輪船B與小島A的距離是(  )

A.海里B.海里C.120海里D.60海里

【答案】B

【解析】

過點CCDAB于點D,先解RtACD,求出AD,CD,再根據(jù)BD=CD,即可解出AB

如圖,過點CCDAB于點D,

則∠ACD=30°,∠BCD=45°,

RtACD中,AD=CA=×60=30(海里),

CD=CA·cosACD=60×=(海里),

∵∠BCD=45°,∠BDC=90°,

∴在RtBCD中,BD=CD

AB=AD+BD=AD+CD=30+)海里,

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:AB為⊙O的直徑,點C為弧AB的中點,點D為⊙O上一點,連接CD,交AB于點M,AE為∠DAM的平分線,交CD于點E

1)如圖1,連接BE,若∠ACD=22°,求∠MBE的度數(shù);

2 如圖2,連接DO并延長,交⊙O于點F,連接AF,交CD于點N

①求證:DM2+CN2=CM2;

②如圖3,當(dāng)AD=1,AB=時,請直接寫出線段ME的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax2+bx+ca0)經(jīng)過點(﹣10),且滿足4a+2b+c0,有下列結(jié)論:①a+b0;a+b+c0③b22ac5a2.其中,正確結(jié)論的個數(shù)是(  )

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2x+cx軸交于A(﹣1,0)B(3,0)兩點,與y軸交于點C,點D是該拋物線的頂點.

(1)求拋物線的解析式和直線AC的解析式;

(2)請在y軸上找一點M,使BDM的周長最小,求出點M的坐標(biāo);

(3)試探究:在拋物線上是否存在點P,使以點A,P,C為頂點,AC為直角邊的三角形是直角三角形?若存在,請求出符合條件的點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場為了吸引顧客,設(shè)計了一種促銷活動.在一個不透明的箱子里放有4個完全相同的小球,球上分別標(biāo)有“0元”、“10元”、“30元”和“50元”的字樣.規(guī)定:顧客在本商場同一日內(nèi),消費每滿300元,就可以從箱子里先后摸出兩個球(每次只摸出一個球,第一次摸出后不放回).商場根據(jù)兩個小球所標(biāo)金額之和返還相應(yīng)價格的購物券,可以重新在本商場消費.某顧客消費剛好滿300元,則在本次消費中:

(1)該顧客至少可得___元購物券,至多可得___元購物券;

(2)請用畫樹狀圖或列表法,求出該顧客所獲購物券的金額不低于50元的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店在開業(yè)前,所進三種貨物:上衣、褲子和鞋子的數(shù)量共480份,這三種貨物進貨的數(shù)量比例如圖(1)所示.商店安排6人只銷售上衣,4人只銷售褲子,2人只銷售鞋子,用了5天的時間銷售貨物的情況如圖(2)及表格所示.

1)求所進三種貨物中上衣有多少件?

2)直接在圖中把圖(2)補充完整;

3)表格中的=    (直接填空);

4)若銷售人員不變,并以同樣的銷售速度銷售,則上衣、褲子和鞋子中最先銷售完的貨物為    (直接填空)

貨物

上衣()

褲子()

鞋子()

5天的銷售總額

150

a

30

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市以3/本的價格購進某種筆記本若干,然后以5/本的價格出售,每天售出20本.通過調(diào)查發(fā)現(xiàn),這種筆記本的售價每降低0.1元,每天可多售出4本,為保證每天至少售出50本,該超市決定降價銷售.

1)若每本降價元,則每天的銷售量是________本(用含的代數(shù)式表示).

2)要想每天贏利60元,該超市需將每本的售價降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生食堂共有座位個,某天午餐時,食堂中學(xué)生人數(shù)(人)與時間(分鐘)

變化的函數(shù)關(guān)系圖象如圖中的折線

1)試分別求出當(dāng)時,的函數(shù)關(guān)系式;

2)已知該校學(xué)生數(shù)有人,考慮到安全因素,學(xué)校決定對剩余名同學(xué)延時用餐,即等食堂空閑座位不少于個時,再通知剩余名同學(xué)用餐.請結(jié)合圖象分析,這名學(xué)生至少要延時多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,二次函數(shù)圖像交軸于,交交軸于點,是拋物線的頂點,對稱軸經(jīng)過軸上的點

1)求二次函數(shù)關(guān)系式;

2)對稱軸交于點,點為對稱軸上一動點.

①求的最小值及取得最小值時點的坐標(biāo);

②在①的條件下,把沿著軸向右平移個單位長度時,設(shè)重疊部分面積記為,求之間的函數(shù)表達(dá)式,并求出的最大值.

    

查看答案和解析>>

同步練習(xí)冊答案