【題目】如圖,已知等邊三角形ABC的邊長為2,E、F、G分別是邊AB、BC、CA的點(diǎn),且AE=BF=CG,設(shè)△EFG的面積為y,AE的長為x,則y與x的函數(shù)圖象大致是( )

A.
B.
C.
D.

【答案】C
【解析】解:∵AE=BF=CG,且等邊△ABC的邊長為2,
∴BE=CF=AG=2﹣x;
∴△AEG≌△BEF≌△CFG.
在△AEG中,AE=x,AG=2﹣x,
∵SAEG= AE×AG×sinA= x(2﹣x);
∴y=SABC﹣3SAEG= ﹣3× x(2﹣x)= x2 x+1).
∴其圖象為二次函數(shù),且開口向上.
故選C.
根據(jù)題意可知△AEG≌△BEF≌△CFG三個(gè)三角形全等,且在△AEG中,AE=x,AG=2﹣x;可得△AEG的面積y與x的關(guān)系;進(jìn)而可判斷得則y關(guān)于x的函數(shù)的圖象的大致形狀.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD平分∠BAC,AD⊥BD于點(diǎn)D,DE∥ACAB于點(diǎn)E,若AB=8,則DE=_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,四邊形OABC是正方形,點(diǎn)A,C的坐標(biāo)分別為(2,0),(0,2),D是x軸正半軸上的一點(diǎn)(點(diǎn)D在點(diǎn)A的右邊),以BD為邊向外作正方形BDEF(E,F(xiàn)兩點(diǎn)在第一象限),連接FC交AB的延長線于點(diǎn)G.若反比例函數(shù)的圖象經(jīng)過點(diǎn)E,G兩點(diǎn),則k的值為 ______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC為等邊三角形,AB=2,點(diǎn)D為邊AB上一點(diǎn),過點(diǎn)D作DE∥AC,交BC于E點(diǎn);過E點(diǎn)作EF⊥DE,交AB的延長線于F點(diǎn).設(shè)AD=x,△DEF的面積為y,則能大致反映y與x函數(shù)關(guān)系的圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們“節(jié)能環(huán)保,綠色出行”意識的增強(qiáng),越來越多的人喜歡騎自行車出行,也給自行車商家?guī)砩虣C(jī).某自行車行經(jīng)營的A型自行車去年銷售總額為8萬元.今年該型自行車每輛售價(jià)預(yù)計(jì)比去年降低200元.若該型車的銷售數(shù)量與去年相同,那么今年的銷售總額將比去年減少10%,求:

(1)A型自行車去年每輛售價(jià)多少元?

(2)該車行今年計(jì)劃新進(jìn)一批A型車和新款B型車共60輛,且B型車的進(jìn)貨數(shù)量不超過A型車數(shù)量的兩倍.已知,A型車和B型車的進(jìn)貨價(jià)格分別為1500元和1800元,計(jì)劃B型車銷售價(jià)格為2400元,應(yīng)如何組織進(jìn)貨才能使這批自行車銷售獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:

門頭溝盛產(chǎn)名特果品,東山的京白梨,靈水的核桃,柏峪的扁杏仁,龍泉霧的香白杏,火村紅杏,太子墓的紅富士蘋果,隴駕莊蓋柿都是上等的干鮮果品,有的曾為皇宮供品,至今在國內(nèi)享有盛名.秋收季節(jié),某公司打算到門頭溝果園基地購買一批優(yōu)質(zhì)蘋果.果園基地對購買量在1000千克(含1000千克)以上的有兩種銷售方案,方案一:每千克10元,由基地送貨上門;方案二:每千克8元,由顧客自己租車運(yùn)回.已知該公司租車從基地到公司的運(yùn)輸費(fèi)為5000元.

(1)公司購買多少千克蘋果時(shí),選擇兩種購買方案的付款費(fèi)用相同;

(2)如果公司打算購買3000千克蘋果,選擇哪種方案付款最少?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于反比例函數(shù)y的下列說法正確的是(

該函數(shù)的圖象在第二、四象限;

Ax1y1)、Bx2、y2)兩點(diǎn)在該函數(shù)圖象上,若x1x2,則y1y2

當(dāng)x2時(shí),則y>-2;

若反比例函數(shù)y與一次函數(shù)yxb的圖象無交點(diǎn),則b的范圍是-4b4.

A. B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,△A′B′C可以由△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到,其中點(diǎn)A′與點(diǎn)A是對應(yīng)點(diǎn),點(diǎn)B′與點(diǎn)B是對應(yīng)點(diǎn),連接AB′,且A、B′、A′在同一條直線上,則AA′的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的方程x2-(2k+1)x+4k-2=0

(1)求證:不論k取何值,這個(gè)方程總有實(shí)數(shù)根

(2)若等腰ABC一邊長a=4,另兩邊長b,c恰好是這個(gè)方程的兩根,求ABC的周長.

查看答案和解析>>

同步練習(xí)冊答案