【題目】閱讀下列材料:
配方法是初中數(shù)學(xué)中經(jīng)常用到的一個重要方法,學(xué)好配方法對我們學(xué)習(xí)數(shù)學(xué)有很大的幫助,所謂配方就是
將某一個多項式變形為一個完全平方式,變形一定要是恒等的,例如解方程,則,∴ .方程, 求、.則有,
∴.解得.方程,則有,
∴.解得,根據(jù)以上材料解答下列各題:
(1)若.求的值;
(2).求的值;
(3)若表示△ABC的三邊,且,試判斷△ABC的形狀,并說明理由.
【答案】(1)a=﹣2;(2)﹣1;(3)△ABC為等邊三角形.理由見解析.
【解析】
(1)運(yùn)用完全平方公式將a2+4a+4=0變形為(a+2)2=0,即可求出a的值;
(2)首先將x2-4x+y2+6y+13=0分成兩個完全平方式的形式,根據(jù)非負(fù)數(shù)的性質(zhì)求出x、y的值,再代入(x+y)2017即可解答;
(3)先將已知等式利用配方法變形,再利用非負(fù)數(shù)的性質(zhì)解題.
解:(1)∵a2+4a+4=0 ,∴(a+2)2=0 ,∴a+2=0,∴a1=a2=﹣2;
(2)∵x2﹣4x+y2+6y+13=0 , ∴(x﹣2)2+(y+3)2=0 ,∴x=2,y=﹣3,
∴(x+y)﹣2017=(2﹣3)﹣2017=﹣1;
(3)△ABC為等邊三角形.理由如下:
∵a2+b2+c2﹣ac﹣ab﹣bc=0, ∴2a2+2b2+2c2﹣2ac﹣2ab﹣2bc=0
即a2+b2﹣2ab+b2+c2﹣2bc+a2+c2﹣2ac=0 ,∴(a﹣b)2+(b﹣c)2+(c﹣a)2=0
∴a﹣b=0,b﹣c=0,c﹣a=0 ,∴a=b=c,∴△ABC為等邊三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為2cm的等邊△ABC的邊BC在直線l上,兩條距離為1cm的平行直線a和b垂直于直線l,直線a、b同時向右移動(直線a的起始位置在B點(diǎn)),運(yùn)動速度為1cm/s,直到直線a到達(dá)C點(diǎn)時停止.在a、b向右移動的過程中,記△ABC夾在a和b之間的部分的面積為S,求S與t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.利用一面墻(墻的長度不限),用20m的籬笆圍成一個矩形場地ABCD.設(shè)矩形與墻垂直的一邊AB=xm,矩形的面積為Sm2.
(1)用含x的式子表示S;
(2)若面積S=48m2,求AB的長;
(3)能圍成S=60m2的矩形嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線,過點(diǎn)A作AE⊥CD,AE分別與CD、CB相交于點(diǎn)H、E,AH=2CH.
(1)求sinB的值;
(2)如果CD=,求BE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一名在校大學(xué)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品的成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于16元/件,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量(件與銷售價(元/件)之間的函數(shù)關(guān)系如圖所示.
(1)求與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)求每天的銷售利潤W(元與銷售價(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)
(1)用配方法將化成y =a(x-h)2+k的形式,并寫出它的開口方向、對稱軸和頂點(diǎn)坐標(biāo);
(2)畫出它的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)與反比例函數(shù)在同一直角坐標(biāo)系內(nèi)的圖像的大致位置是圖中的( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在平面直角坐標(biāo)系中,頂點(diǎn)的坐標(biāo)分別為A(-4,4),B(-1,1),C(-1,4).
(1)畫出與△ABC關(guān)于y軸對稱的△A1B1C1.
(2)將△ABC繞點(diǎn)B逆時針旋轉(zhuǎn)90°,得到△A2BC2,畫兩出△A2BC2.
(3)求線段AB在旋轉(zhuǎn)過程中掃過的圖形面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】麗水某公司將“麗水山耕”農(nóng)副產(chǎn)品運(yùn)往杭州市場進(jìn)行銷售,記汽車行駛時為t小時,平均速度為v千米/小時(汽車行駛速度不超過100千米/小時).根據(jù)經(jīng)驗(yàn),v,t的一組對應(yīng)值如下表:
(1)根據(jù)表中的數(shù)據(jù),求出平均速度v(千米/小時)關(guān)于行駛時間t(小時)的函數(shù)表達(dá)式;
(2)汽車上午7:30從麗水出發(fā),能否在上午00之前到達(dá)杭州市場?請說明理由;
(3)若汽車到達(dá)杭州市場的行駛時間t滿足3.5≤t≤4,求平均速度v的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com