【題目】已知關(guān)于x的一元二次方程x2﹣2mx+m2﹣m=o有兩個實數(shù)根a、b;

(1)求實數(shù)m的取值范圍;

(2)求代數(shù)式a2+b2﹣3ab的最大值.

【答案】(1)m≥0;(2)

【解析】

試題分析:(1)根據(jù)判別式的意義得到=(﹣2m)2﹣4(m2﹣m)≥0,然后解不等式即可;

(2)由根與系數(shù)的關(guān)系得出a+b=2m,ab=m2﹣m,將代數(shù)式a2+b2﹣3ab變形為(a+b)2﹣5ab=﹣m2+5m=﹣(m﹣2+,即可求出最大值.

解:(1)根據(jù)題意得=(﹣2m)2﹣4(m2﹣m)≥0,

解得m≥0;

(2)關(guān)于x的一元二次方程x2﹣2mx+m2﹣m=0有兩個實數(shù)根a、b,

a+b=2m,ab=m2﹣m,

a2+b2﹣3ab=(a+b)2﹣5ab

=(2m)2﹣5(m2﹣m)

=﹣m2+5m

=﹣(m﹣2+,

由(1)得m≥0,

代數(shù)式a2+b2﹣3ab的最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3cm,動點(diǎn)P從B點(diǎn)出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運(yùn)動,到達(dá)A點(diǎn)停止運(yùn)動;另一動點(diǎn)Q同時從B點(diǎn)出發(fā),以1cm/s的速度沿著邊BA向A點(diǎn)運(yùn)動,到達(dá)A點(diǎn)停止運(yùn)動.設(shè)P點(diǎn)運(yùn)動時間為x(s),BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A.對角線互相垂直的四邊形是菱形

B.矩形的對角線互相垂直

C.一組對邊平行的四邊形是平行四邊形

D.四邊相等的四邊形是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列長度的三條線段中,能組成三角形的是( 。

A. 3cm、4cm、8cm B. 3cm、5cm、8cm C. 5cm、6cm、10cm D. 5cm、6cm、11cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y交于點(diǎn)C,BAC的平分線與y軸交于點(diǎn)D,與拋物線相交于點(diǎn)Q,P是線段AB上一點(diǎn),過點(diǎn)P作x軸的垂線,分別交AD,AC于點(diǎn)E,F(xiàn),連接BE,BF.

(1)如圖1,求線段AC所在直線的解析式;

(2)如圖1,求BEF面積的最大值和此時點(diǎn)P的坐標(biāo);

(3)如圖2,以EF為邊,在它的右側(cè)作正方形EFGH,點(diǎn)P在線段AB上運(yùn)動時正方形EFGH也隨之運(yùn)動和變化,當(dāng)正方形EFGH的頂點(diǎn)G或頂點(diǎn)H在線段BC上時,求正方形EFGH的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,坐標(biāo)平面上,ABC≌△DEF全等,其中A、B、C的對應(yīng)頂點(diǎn)分別為D、E、F,且AB=BC,若A、B、C的坐標(biāo)分別為(﹣3,1)、(﹣6,﹣3)、(﹣1,﹣3),D、E兩點(diǎn)在y軸上,則F點(diǎn)到y(tǒng)軸的距離為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】榮慶公司計劃從商店購買同一品牌的臺燈和手電筒,已知購買一個臺燈比購買一個手電筒多用20元,若用400元購買臺燈和用160元購買手電筒,則購買臺燈的個數(shù)是購買手電筒個數(shù)的一半.

(1)求購買該品牌一個臺燈、一個手電筒各需要多少元?

(2)經(jīng)商談,商店給予榮慶公司購買一個該品牌臺燈贈送一個該品牌手電筒的優(yōu)惠,如果榮慶公司需要手電筒的個數(shù)是臺燈個數(shù)的2倍還多8個,且該公司購買臺燈和手電筒的總費(fèi)用不超過670元,那么榮慶公司最多可購買多少個該品牌臺燈?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于邊長為4的等邊三角形ABC,以點(diǎn)B為坐標(biāo)原點(diǎn),底邊BC方向所在的直線為x軸正方向,建立平面直角坐標(biāo)系,則頂點(diǎn)A的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】西瓜經(jīng)營戶以2元/千克的價格購進(jìn)一批小型西瓜,以3元/千克的價格出售,每天可售出200千克.為了促銷,該經(jīng)營戶決定降價銷售.經(jīng)調(diào)查發(fā)現(xiàn),這種小型西瓜每降價0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.該經(jīng)營戶要想每天盈利200元,應(yīng)將每千克小型西瓜的售價降低多少元?

查看答案和解析>>

同步練習(xí)冊答案