【題目】以下是推導(dǎo)三角形內(nèi)角和定理的學(xué)習(xí)過程,請(qǐng)補(bǔ)全證明過程及推理依據(jù).

已知:如圖,ABC

求證:∠A+B+C=180°

證明:過點(diǎn)ADEBC,(請(qǐng)?jiān)趫D上畫出該輔助線并標(biāo)注D,E兩個(gè)字母)

B=BAD,∠C= .(

∵點(diǎn)D,AE在同一條直線上,

(平角的定義)

∴∠B+BAC+C=180°

即三角形的內(nèi)角和為180°

【答案】EAC;兩直線平行,內(nèi)錯(cuò)角相等;∠DAB+BAC+CAE=180°

【解析】

過點(diǎn)ADEBC,依據(jù)平行線的性質(zhì),即可得到∠B=BAD,∠C=EAC,再根據(jù)平角的定義,即可得到三角形的內(nèi)角和為180°

證明:如圖,過點(diǎn)ADEBC,

則∠B=BAD,∠C=EAC.( 兩直線平行,內(nèi)錯(cuò)角相等)

∵點(diǎn)DA,E在同一條直線上,

∴∠DAB+BAC+CAE=180°(平角的定義)

∴∠B+BAC+C=180°

即三角形的內(nèi)角和為180°

故答案為:∠EAC;兩直線平行,內(nèi)錯(cuò)角相等;∠DAB+BAC+CAE=180°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,邊上一點(diǎn),且,有下列結(jié)論:①;②是等邊三角形;③是等腰三角形;④,其中結(jié)論正確的有_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC的三個(gè)頂點(diǎn)坐標(biāo)分別是A(1,1),B(4,1),C(3,3).

(1)將ABC向下平移5個(gè)單位后得到A1B1C1,請(qǐng)畫出A1B1C1;

(2)將ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到A2B2C2,請(qǐng)畫出A2B2C2;

(3)判斷以O,A1,B為頂點(diǎn)的三角形的形狀.(無須說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程

(1)為何值時(shí),方程有一根為零?

(2)為何值時(shí),方程的兩個(gè)根互為相反數(shù)?

(3)是否存在,使方程的兩個(gè)根互為倒數(shù)?若存在,請(qǐng)求出的值;不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,E為矩形ABCD的邊AD上一點(diǎn),動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P沿折線BE-ED-DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,它們運(yùn)動(dòng)的速度都是1cm/秒.設(shè)P、Q同發(fā)t秒時(shí),△BPQ的面積為ycm2.已知y與t的函數(shù)關(guān)系圖象如圖2)(曲線OM為拋物線的一部分,則下列結(jié)論:

①AD=BE=5;

②cos∠ABE=

③當(dāng)0<t≤5時(shí),y=t2;

④當(dāng)t=秒時(shí),△ABE∽△QBP;

其中正確的結(jié)論是 填序號(hào)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為解決中小學(xué)大班額問題,東營(yíng)市各縣區(qū)今年將改擴(kuò)建部分中小學(xué),某縣計(jì)劃對(duì)A、B兩類學(xué)校進(jìn)行改擴(kuò)建,根據(jù)預(yù)算,改擴(kuò)建2所A類學(xué)校和3所B類學(xué)校共需資金7800萬元,改擴(kuò)建3所A類學(xué)校和1所B類學(xué)校共需資金5400萬元.

(1)改擴(kuò)建1所A類學(xué)校和1所B類學(xué)校所需資金分別是多少萬元?

(2)該縣計(jì)劃改擴(kuò)建A、B兩類學(xué)校共10所,改擴(kuò)建資金由國(guó)家財(cái)政和地方財(cái)政共同承擔(dān).若國(guó)家財(cái)政撥付資金不超過11800萬元;地方財(cái)政投入資金不少于4000萬元,其中地方財(cái)政投入到A、B兩類學(xué)校的改擴(kuò)建資金分別為每所300萬元和500萬元.請(qǐng)問共有哪幾種改擴(kuò)建方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線a≠0)的圖象與x軸交于AB兩點(diǎn),與y軸交于C點(diǎn),已知B點(diǎn)坐標(biāo)為(4,0).

1)求拋物線的解析式;

2)試探究ABC的外接圓的圓心位置,并求出圓心坐標(biāo);

3)若點(diǎn)M是線段BC下方的拋物線上一點(diǎn),求MBC的面積的最大值,并求出此時(shí)M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線,點(diǎn)在直線上,以點(diǎn)為圓心,適當(dāng)長(zhǎng)為半徑畫弧,分別交直線于點(diǎn),連接. ,則的度數(shù)為____________.

查看答案和解析>>

同步練習(xí)冊(cè)答案