【題目】已知△ABC在平面直角坐標(biāo)系中的位置如圖所示.請解答:
(1)點(diǎn)A、C的坐標(biāo)分別是 、 ;
(2)畫出△ABC繞點(diǎn)A按逆時針方向旋轉(zhuǎn)90°后的△AB'C';
(3)在(2)的條件下,求點(diǎn)C旋轉(zhuǎn)到點(diǎn)C'所經(jīng)過的路線長(結(jié)果保留π).
【答案】(1)(1,4);(5,2);(2)作圖見解析;(3).
【解析】
(1)根據(jù)圖可得,點(diǎn)A坐標(biāo)為(1,4);點(diǎn)C坐標(biāo)為(5,2);
(2)畫出△ABC繞點(diǎn)A按逆時針方向旋轉(zhuǎn)90°后的△AB′C′;
(3)在(2)的條件下,先求出AC的長,再求點(diǎn)C旋轉(zhuǎn)到點(diǎn)C′所經(jīng)過的路線長即可;
解:
(1)點(diǎn)A坐標(biāo)為(1,4);點(diǎn)C坐標(biāo)為(5,2).
故答案為:(1,4);(5,2);
(2)如圖所示,△AB'C'即為所求;
(3)∵點(diǎn)A坐標(biāo)為(1,4);點(diǎn)C坐標(biāo)為(5,2),
∴,
∴點(diǎn)C旋轉(zhuǎn)到C′所經(jīng)過的路線長;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AD為直徑的⊙O交AB于C點(diǎn),BD的延長線交⊙O于E點(diǎn),連CE交AD于F點(diǎn),若AC=BC.
(1)求證:;
(2)若,求tan∠CED的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店將進(jìn)價為8元的商品按每件10元售出,每天可售出200件,現(xiàn)在采取提高商品售價減少銷售量的辦法增加利潤,如果這種商品每件的銷售價每提高0.5元其銷售量就減少10件,問:
(1)應(yīng)將每件售價定為多少元時,才能使每天利潤為640元?
(2)店主想要獲得每天800元的利潤,小紅同學(xué)認(rèn)為不可能,如果你同意小紅同學(xué)的說法,請進(jìn)行說明;如果你不同意,請簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB、CD是⊙O的兩條弦,AB∥CD,AB=6,CD=8,⊙O的半徑為5,則AB與CD的距離是( 。
A.1B.7C.1或7D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)E在AC上(且不與點(diǎn)A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)請直接寫出線段AF,AE的數(shù)量關(guān)系 ;
(2)將△CED繞點(diǎn)C逆時針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時,如圖②,連接AE,請判斷線段AF,AE的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)在圖②的基礎(chǔ)上,將△CED繞點(diǎn)C繼續(xù)逆時針旋轉(zhuǎn),請判斷(2)問中的結(jié)論是否發(fā)生變化?若不變,結(jié)合圖③寫出證明過程;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖,下列結(jié)論:① abc>0;② 2a+b=0;③ 當(dāng)m≠1時,a+b>am2+bm;④ a-b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2,
其中正確的有( )
A. ①②③ B. ②④ C. ②⑤ D. ②③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(-4,2)、B(n,-4)是一次函數(shù)的圖象與反比例函數(shù)的圖象的兩個交點(diǎn).
(1) 求反比例函數(shù)和一次函數(shù)的解析式;
(2) 根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】池州十中組織七、八、九年級學(xué)生參加“中國夢”作文比賽,該校將收到的參賽作文進(jìn)行分年級統(tǒng)計,繪制了以下兩幅不完整的統(tǒng)計圖,根據(jù)圖中提供的信息完成以下問題:
(1)全校參賽作文篇數(shù)為 篇,補(bǔ)全條形統(tǒng)計圖;
(2)扇形統(tǒng)計圖中九年級參賽作文篇數(shù)對應(yīng)的圓心角是 ;
(3)經(jīng)過評審,全校共有4篇作文榮獲一等獎,其中一篇來自七年級,兩篇來自八年級,一篇來自九年級,學(xué)校準(zhǔn)備從一等獎作文中任選兩篇刊登在校刊上,請用樹狀圖方法求出九年級一等獎作文登上校刊的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】截長補(bǔ)短法,是初中幾何題中一種添加輔助線的方法,也是把幾何題化難為易的一種策略.截長就是在長邊上截取一條線段與某一短邊相等,補(bǔ)短就是通過延長或旋轉(zhuǎn)等方式使兩條短邊拼合到一起,從而解決問題.
(1)如圖1,△ABC是等邊三角形,點(diǎn)D是邊BC下方一點(diǎn),∠BDC=120°,探索線段DA、DB、DC之間的數(shù)量關(guān)系.
解題思路:將△ABD繞點(diǎn)A逆時針旋轉(zhuǎn)60°得到△ACE,可得AE=AD, CE=BD,∠ABD=∠ACE,∠DAE=60°,根據(jù)∠BAC+∠BDC=180°,可知∠ABD+∠ACD=180°,則 ∠ACE+∠ACD=180°,易知△ADE是等邊三角形,所以AD=DE,從而解決問題.
根據(jù)上述解題思路,三條線段DA、DB、DC之間的等量關(guān)系是___________;
(2)如圖2,Rt△ABC中,∠BAC=90°,AB=AC.點(diǎn)D是邊BC下方一點(diǎn),∠BDC=90°,探索三條線段DA、DB、DC之間的等量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com